1,221 research outputs found
Majorana modes and p-wave superfluids for fermionic atoms in optical lattices.
The quest for realization of non-Abelian phases of matter, driven by their possible use in fault-tolerant topological quantum computing, has been spearheaded by recent developments in p-wave superconductors. The chiral p(x)+ip(y)-wave superconductor in two-dimensions exhibiting Majorana modes provides the simplest phase supporting non-Abelian quasiparticles and can be seen as the blueprint of fractional topological order. Alternatively, Kitaev's Majorana wire has emerged as an ideal toy model to understand Majorana modes. Here we present a way to make the transition from Kitaev's Majorana wires to two-dimensional p-wave superconductors in a system with cold atomic gases in an optical lattice. The main idea is based on an approach to generate p-wave interactions by coupling orbital degrees of freedom with strong s-wave interactions. We demonstrate how this design can induce Majorana modes at edge dislocations in the optical lattice, and we provide an experimentally feasible protocol for the observation of the non-Abelian statistics.We acknowledge support by the Center for Integrated Quantum Science and Technology (IQST) and the Deutsche Forschungsgemeinschaft (DFG) within SFB TRR 21, the Leverhulme Trust (ECF-2011-565), the Newton Trust of the University of Cambridge, the Royal Society (UF120157), SFB FoQus (FWF Project No. F4006-N16), the ERC Synergy Grant UQUAM, SIQS, and Swiss National Science Foundation. GM, SH, CK, and HB thank the Institut d’Etudes Scientifiques Cargèse and CECAM for their hospitality.This is the accepted manuscript of an article published in Nature Communications [A Bühler, N Lang, CV Kraus, G Möller, SD Huber, HP Büchler Nature Communications 5:4504 doi: 10.1038/ncomms5504 (2014)]
Non-global Structure of the O({\alpha}_s^2) Dijet Soft Function
High energy scattering processes involving jets generically involve matrix
elements of light- like Wilson lines, known as soft functions. These describe
the structure of soft contributions to observables and encode color and
kinematic correlations between jets. We compute the dijet soft function to
O({\alpha}_s^2) as a function of the two jet invariant masses, focusing on
terms not determined by its renormalization group evolution that have a
non-separable dependence on these masses. Our results include non-global single
and double logarithms, and analytic results for the full set of non-logarithmic
contributions as well. Using a recent result for the thrust constant, we
present the complete O({\alpha}_s^2) soft function for dijet production in both
position and momentum space.Comment: 55 pages, 8 figures. v2: extended discussion of double logs in the
hard regime. v3: minor typos corrected, version published in JHEP. v4: typos
in Eq. (3.33), (3.39), (3.43) corrected; this does not affect the main
result, numerical results, or conclusion
Many-body Landau-Zener dynamics in coupled 1D Bose liquids
The Landau-Zener model of a quantum mechanical two-level system driven with a
linearly time dependent detuning has served over decades as a textbook paradigm
of quantum dynamics. In their seminal work [L. D. Landau, Physik. Z. Sowjet. 2,
46 (1932); C. Zener, Proc. Royal Soc. London 137, 696 (1932)], Landau and Zener
derived a non-perturbative prediction for the transition probability between
two states, which often serves as a reference point for the analysis of more
complex systems. A particularly intriguing question is whether that framework
can be extended to describe many-body quantum dynamics. Here we report an
experimental and theoretical study of a system of ultracold atoms, offering a
direct many-body generalization of the Landau-Zener problem. In a system of
pairwise tunnel-coupled 1D Bose liquids we show how tuning the correlations of
the 1D gases, the tunnel coupling between the tubes and the inter-tube
interactions strongly modify the original Landau-Zener picture. The results are
explained using a mean-field description of the inter-tube condensate
wave-function, coupled to the low-energy phonons of the 1D Bose liquid.Comment: 13 pages, 10 figures
Multi-step self-guided pathways for shape-changing metamaterials
Multi-step pathways, constituted of a sequence of reconfigurations, are
central to a wide variety of natural and man-made systems. Such pathways
autonomously execute in self-guided processes such as protein folding and
self-assembly, but require external control in macroscopic mechanical systems,
provided by, e.g., actuators in robotics or manual folding in origami. Here we
introduce shape-changing mechanical metamaterials, that exhibit self-guided
multi-step pathways in response to global uniform compression. Their design
combines strongly nonlinear mechanical elements with a multimodal architecture
that allows for a sequence of topological reconfigurations, i.e., modifications
of the topology caused by the formation of internal self-contacts. We realized
such metamaterials by digital manufacturing, and show that the pathway and
final configuration can be controlled by rational design of the nonlinear
mechanical elements. We furthermore demonstrate that self-contacts suppress
pathway errors. Finally, we demonstrate how hierarchical architectures allow to
extend the number of distinct reconfiguration steps. Our work establishes
general principles for designing mechanical pathways, opening new avenues for
self-folding media, pluripotent materials, and pliable devices in, e.g.,
stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See
https://youtu.be/8m1QfkMFL0I for an explanatory vide
Static non-reciprocity in mechanical metamaterials
Reciprocity is a fundamental principle governing various physical systems,
which ensures that the transfer function between any two points in space is
identical, regardless of geometrical or material asymmetries. Breaking this
transmission symmetry offers enhanced control over signal transport, isolation
and source protection. So far, devices that break reciprocity have been mostly
considered in dynamic systems, for electromagnetic, acoustic and mechanical
wave propagation associated with spatio-temporal variations. Here we show that
it is possible to strongly break reciprocity in static systems, realizing
mechanical metamaterials that, by combining large nonlinearities with suitable
geometrical asymmetries, and possibly topological features, exhibit vastly
different output displacements under excitation from different sides, as well
as one-way displacement amplification. In addition to extending non-reciprocity
and isolation to statics, our work sheds new light on the understanding of
energy propagation in non-linear materials with asymmetric crystalline
structures and topological properties, opening avenues for energy absorption,
conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5
figures
An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling
The Hubbard model, containing only the minimum ingredients of nearest
neighbor hopping and on-site interaction for correlated electrons, has
succeeded in accounting for diverse phenomena observed in solid-state
materials. One of the interesting extensions is to enlarge its spin symmetry to
SU(N>2), which is closely related to systems with orbital degeneracy. Here we
report a successful formation of the SU(6) symmetric Mott insulator state with
an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical
lattice. Besides the suppression of compressibility and the existence of charge
excitation gap which characterize a Mott insulating phase, we reveal an
important difference between the cases of SU(6) and SU(2) in the achievable
temperature as the consequence of different entropy carried by an isolated
spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful
for investigating exotic quantum phases of SU(N) Hubbard system at extremely
low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic
The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation
We review the recently proposed extension of the Gutzwiller approximation, M.
Schiro' and M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010), designed to
describe the out-of-equilibrium time-evolution of a Gutzwiller-type variational
wave function for correlated electrons. The method, which is strictly
variational in the limit of infinite lattice-coordination, is quite general and
flexible, and it is applicable to generic non-equilibrium conditions, even far
beyond the linear response regime. As an application, we discuss the quench
dynamics of a single-band Hubbard model at half-filling, where the method
predicts a dynamical phase transition above a critical quench that resembles
the sharp crossover observed by time-dependent dynamical mean field theory. We
next show that one can actually define in some cases a multi-configurational
wave function combination of a whole set of mutually orthogonal Gutzwiller wave
functions. The Hamiltonian projected in that subspace can be exactly evaluated
and is equivalent to a model of auxiliary spins coupled to non-interacting
electrons, closely related to the slave-spin theories for correlated electron
models. The Gutzwiller approximation turns out to be nothing but the mean-field
approximation applied to that spin-fermion model, which displays, for any
number of bands and integer fillings, a spontaneous symmetry breaking
that can be identified as the Mott insulator-to-metal transition.Comment: 25 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for
thermoelectric applications: theory and experiment
Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption
Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky
Way. It became the second-brightest star in the sky during its mid-19th century
"Great Eruption," but then faded from view (with only naked-eye estimates of
brightness). Its eruption is unique among known astronomical transients in that
it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3
kpc away, spatially resolved studies of the nebula have constrained the ejected
mass and velocity, indicating that in its 19th century eruption, Eta Car
ejected more than 10 M_solar in an event that had 10% of the energy of a
typical core-collapse supernova without destroying the star. Here we report the
discovery of light echoes of Eta Carinae which appear to be from the 1838-1858
Great Eruption. Spectra of these light echoes show only absorption lines, which
are blueshifted by -210 km/s, in good agreement with predicted expansion
speeds. The light-echo spectra correlate best with those of G2-G5 supergiant
spectra, which have effective temperatures of ~5000 K. In contrast to the class
of extragalactic outbursts assumed to be analogs of Eta Car's Great Eruption,
the effective temperature of its outburst is significantly cooler than allowed
by standard opaque wind models. This indicates that other physical mechanisms
like an energetic blast wave may have triggered and influenced the eruption.Comment: Accepted for publication by Nature; 4 pages, 4 figures, SI: 6 pages,
3 figures, 5 table
Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry
It is well known that R-symmetric models dramatically alleviate the SUSY
flavor and CP problems. We study particular modifications of existing
R-symmetric models which share the solution to the above problems, and have
interesting consequences for electroweak baryogenesis and the Dark Matter (DM)
content of the universe. In particular, we find that it is naturally possible
to have a strongly first-order electroweak phase transition while
simultaneously relaxing the tension with EDM experiments. The R-symmetry (and
its small breaking) implies that the gauginos (and the neutralino LSP) are
pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The
singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role
in making the electroweak phase transition strongly first-order. The
pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac
particle during freeze-out, but like a Majorana particle for annihilation today
and in scattering against nuclei, thus being consistent with current
constraints. Assuming a standard cosmology, it is possible to simultaneously
have a strongly first-order phase transition conducive to baryogenesis and have
the LSP provide the full DM relic abundance, in part of the allowed parameter
space. However, other possibilities for DM also exist, which are discussed. It
is expected that upcoming direct DM searches as well as neutrino signals from
DM annihilation in the Sun will be sensitive to this class of models.
Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
- …
