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The quest for realisations of non-Abelian
phases of matter, driven by their possible use
in fault-tolerant topological quantum comput-
ing, has been spearheaded by recent develop-
ments in p-wave superconductors. The chiral
px+ipy-wave superconductor in two-dimensions
exhibiting Majorana modes provides the sim-
plest phase supporting non-Abelian quasipar-
ticles and can be seen as the blueprint of frac-
tional topological order. Alternatively, Ki-
taev’s Majorana wire has emerged as an ideal
toy model to understand Majorana modes.
Here, we present a way to make the tran-
sition from Kitaev’s Majorana wires to two-
dimensional p-wave superconductors in a sys-
tem with cold atomic gases in an optical lattice.
The main idea is based on an approach to gen-
erate p-wave interactions by coupling orbital
degrees of freedom with strong s-wave inter-
actions. We demonstrate how this design can
induce Majorana modes at edge dislocations
in the optical lattice and we provide an exper-
imentally feasible protocol for the observation
of the non-Abelian statistics.

Candidates for topological phases supporting non-
Abelian anyons [1] with potential application in topo-
logical quantum computing [2, 3] are found among a
variety of systems including superfluid 3He-A [4], the
layered superconductor Sr2Ru O4 [5], the fractional
quantum Hall state at ν = 5/2 [6, 7], and supercon-
ductor / topological insulator or similar heterostruc-
tures [8–11]. Most recently, indium antimonide nano-
wires in contact with an s-wave superconductor have
shown promising experimental evidence consistent
with the presence of the sought-after non-Abelian
zero-energy Majorana states [12, 13]. However, many
questions still ask for a definitive answer.

Alongside the tremendous progress in solid-state
systems, cold atomic gases provide a different an-
gle when looking at p-wave superconductors. Thanks
to their largely different strengths and shortcomings
compared to solid-state systems, cold atomic gases
might offer solutions to problems that are yet hard
to address otherwise. For instance, it is well known
that the spatial dimension of a setup can easily be con-
trolled by optical lattices, while Feshbach resonances
allow one to tune the interaction strength almost at

FIG. 1. Lattice setup. Spinless fermions residing at
the lattice sites are coupled to a molecular state in the
center of each plaquette. The molecular states exhibit a
p-wave symmetry and are doubly degenerate. Anisotropic
hoppings ty/tx allow for the transition from coupled wires
to the 2D isotropic system.

will [14]. Unfortunately, the lifetime of p-wave reso-
nant gases was found to be very limited [15, 16] due to
a number of well understood decay channels [17, 18].
Identifying realisations of atomic p-wave superfluids
with a sufficient lifetime emerged as a central chal-
lenge in this field. This led to proposals such as Bose-
Fermi mixtures in opitcal lattices [19–21], microwave
dressed polar molecules [22], the introduction of syn-
thetic spin-orbit coupling [23–26], the quantum Zeno
effect [27], or driven dissipation [28]. However, the
complexity in these proposed setups has so far pre-
cluded an experimental realisation.

Here, we present a simple approach to create a
strong p-wave interaction for fermions in an optical
lattice. The main idea is based on a resonant coupling
from the lattice sites to a molecular state residing in
the center of the plaquette in analogy to Ref. [29, 30].
The crucial step is that the combination of a lattice
setup with different orbital states and s-wave interac-
tions can give rise to a strong induced p-wave pairing;
similar ideas have recently been proposed [31]. We
will demonstrate the appearance of p-wave superfluid
phases via this coupling. Moreover, a setup intrinsi-
cally based on an optical lattice allows one to naturally
explore the transition from a two-dimensional p-wave
superfluid to Kitaev’s Majorana wire [32]. Hence we
identify different topological transitions [33], where
the combination of the Fermi-surface topology with
the symmetry of the p-wave superfluid order parame-
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ter gives rise to a rich phase diagram. Most remark-
ably, we find the appearance of Majorana modes local-
ized at edge dislocations; such edge dislocations corre-
spond to vortices in the phase of the lasers generating
the lattice. In combination with another realistic in-
gredient to modern cold atoms experiments, single site
addressability in the lattice [34, 35], we provide a pro-
tocol for the observation of the non-Abelian braiding
statistics.

EFFECTIVE HAMILTONIAN

We start with the presentation of the Hamiltonian
underlying our system. We focus on a setup of spinless
fermionic atoms in an optical square lattice. Then,
the Hamiltonian is well described by the tight-binding
model

H = −
∑
〈ij〉

tijc
†
i cj − µ

∑
i

c†i ci +Hx +Hy. (1)

Here, c†i and ci denote the fermionic creation (annihi-
lation) operators at lattice site i, while µ is the chem-
ical potential fixing the average particle number, and
tij denotes the hopping energy between nearest neigh-
bor sites 〈ij〉. In order to study the transition from
a bulk two-dimensional setup to weakly coupled one-
dimensional chains, we allow for an anisotropic hop-
ping tij , where tij = tx(y) for hopping along a link
in the x-(y-)direction, respectively. The interaction
between the fermions is driven by resonant couplings
Hx(y) to two distinct lattice bound states Xp and Yp
residing in the center of each plaquette as shown in
Fig. 1; similar setups for bosonic atoms have been pre-
viously proposed [29]. Such a coupling is very similar
to the well known two channel model for Feshbach res-
onances, however, the molecular state only exists due
to the presence of the optical lattice, and is localized
in space. For spinless fermions on the lattice sites,
these bound states must exhibit an odd parity sym-
metry for a non-vanishing interaction, which in our
situation is a two-fold degenerate p-wave symmetry.
Then, the coupling Hamiltonians reduce to

Hx = γ
∑
p

X†pXp + g
∑
p

[
X†p (c2c3 − c4c1) + h.c.

]
,

Hy = γ
∑
p

Y †p Yp + g
∑
p

[
Y †p (c1c2 − c3c4) + h.c.

]
,(2)

where the summation
∑
p runs over all plaquettes.

The four lattice sites surrounding each plaquette are
labelled as shown in Fig. 1. The couplings to the lat-
tice bound states respect the p-wave symmetry with
coupling strength g, while the detuning from reso-
nance is given by γ. The latter quantity also includes
the chemical potential γ = ~ω − 2µ with ~ω the en-
ergy difference between the molecular state and two
free fermions.

The most crucial part is the possibility to induce
a strong p-wave interaction by the combination of

orbital degrees of freedom and s-wave interactions.
Here, we provide a sketch of this fundamental idea
(for details we refer to the Methods section): The two-
particle states Xp and Yp in the center of the plaque-
tte consist of two orbital states in the optical lattice
forming a repulsively bound state [36]. In order for
these lattice molecules to fulfill the p-wave symmetry,
we choose the lowest and the first excited state in the
lattice confining the atoms in the center of the plaque-
tte. Furthermore, the two fermions in the two orbital
states have to be in different hyperfine states in order
to profit from a stable s-wave interaction which can be
tuned by conventional Feshbach resonances [37]. This
requires the coupling to the plaquette states to induce
transitions between hyperfine states. To summarize:
the s-wave interaction leads to the formation of repul-
sively bound pairs, while the orbital degree of freedom
is responsible for the p-wave character of these lattice
bound molecules. It is via this mechanism that the op-
tical lattice breaks rotational symmetry and couples
to states with different orbital symmetry allowing for
the conversion of s-wave to p-wave interactions.

MEAN-FIELD THEORY

We first study the zero temperature phase diagram
within mean-field theory. Such a mean-field analy-
sis is well justified as recent DMRG (density matrix
renormalization group) simulations [30] have demon-
strated the appearance of a p-wave superfluid exhibit-
ing Majorana modes in a double wire setup. The au-
thors of Ref. [30] studied a similar interaction between
the wires, and demonstrated the qualitative agree-
ment with the mean-field theory predictions. Using
DMRG simulations, we verified that this qualitative
behavior remains valid also for three-wires for our ef-
fective Hamiltonian. As we are here interested in a
higher dimensional setup, we expect that the influ-
ence of thermal and quantum fluctuations are even
further suppressed and the phase diagram is again
well captured within mean-field theory. The reso-
nant coupling between the fermions and the molecular
state gives rise to a p-wave pairing for the fermions
and leads to a p-wave superfluid. Within mean-field
theory the superfluid order parameters take the form
∆x = 4g〈

∑
pXp〉/N and ∆y = 4g〈

∑
p Yp〉/N , and

describe the macroscopic occupation of the zero mo-
mentum mode for the molecular states. Then, the
Hamiltonian reduces to a quadratic fermionic theory

H =
1

2

∑
q

(
c†q
c−q

)T (
εq ∆q

∆∗q −εq

)(
cq
c†−q

)
+ F0.

(3)
Here, cq =

∑
i e
iqrici/

√
N , and N denotes the num-

ber of lattice sites. F0 accounts for the conven-
tional operator independent parts. Furthermore, the
tight-binding dispersion for the fermions reduces to
εq = −2

∑
α∈{x,y} tα cos(qαa) − µ, while the gap pa-
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FIG. 2. Topological phases and mean-field phase diagram. a, Topological phase diagram: We can distinguish
between three different topological regions. However, the topological indices also depend on the order parameter of the
superfluid (see main text). The different phases are denoted as SFν:νxνy for time-reversal invariant and cSFν:νxνy for chiral

superfluids with ν the strong topological index and νx,y the weak ones. b, Mean-field phase diagram for γtx/g
2 = 1.5:

For the rotationally symmetric setup with tx = ty the ground state is given by a px + ipy superfluid. While for strong
anisotropy tx 6= ty a pure px or py superfluid order parameter dominates. The grey dots mark the points, where the gap
parameters are too small for a convergence of the numerical calculations, and therefore no superfluid phase is accessible
for experimentally realistic temperatures. c-d shows the gap parameters |∆x|/tx, |∆y|/tx, and (|∆x|−|∆y|)/(|∆x|+|∆y|)
along a cut through the phase diagram at ty = tx/2 [see arrow in b], as well as the different topological indices. It is
important to stress, that the topological index νy jumps to 1 at a different position, than the vanishing of ∆y, i.e., the
topological transitions are essentially decoupled from the mean-field transitions.

rameter takes the form of a p-wave superfluid

∆q = −i [∆x sin(qxa) + ∆y sin(qya)] , (4)

where a denotes the lattice spacing. Using a Bogoli-
ubov transformation, we obtain the superfluid exci-

tation spectrum Eq =
√
ε2q + |∆q|2, and the ground-

state energy per unit cell

F(∆x,∆y) =

∫
dq

v0

εq − Eq

2
+

γ

16g2

[
|∆x|2 + |∆y|2

]
,

(5)
with v0 = (2π)2/a2 denoting the volume of the first
Brillouin zone. The order parameters ∆x and ∆y

are determined by the gap equation minimizing the
ground state energy

∂∆xF(∆x,∆y) = ∂∆yF(∆x,∆y) = 0. (6)

The results of the mean-field theory are shown in
Fig. 2b: we find a px + ipy superfluid for the fully
isotropic setup with tx = ty where ∆x = ±i∆y. In
addition to the U(1) symmetry breaking, this phase
also breaks time reversal symmetry. For finite in-
teraction strength the px + ipy superfluid is stable
to a small anisotropy in the hopping. Note that
the anisotropic behavior is reflected in the order pa-
rameter, i.e. |∆x| 6= |∆y|. However, we denote a
px + ipy superfluid as a phase with a finite order
parameter ∆x and ∆y obeying the fixed phase rela-
tion ∆x/∆y = ±i|∆x/∆y|. For increasing anisotropy

tx 6= ty transitions into a px (py) superfluid can ap-
pear, depending on the value of the chemical potential
µ.

Finally, we would like to point out, that at zero
temperature true long range order as predicted within
mean-field theory survives, while thermal fluctuations
will lead to (quasi) long-range order for our two-
dimensional setup. Here, we are mainly interested
in the topological properties of the system, which is
not affected by these phase fluctuations of the order
parameter.

TOPOLOGICAL PHASE TRANSITIONS

In addition to the mean-field transitions, the lattice
system also exhibits a series of topological quantum
phase transitions beyond those found in the classifica-
tion of continuum 2D superfluids [38]. These topolog-
ical properties are most conveniently studied by an-
alyzing the quadratic Hamiltonian in Eq. (3), where
the superfluid order parameters ∆x and ∆y determine
the symmetries. In the parameter regime where the
superfluid exhibits an excitation gap, the topological
properties are characterized by three topological in-
dices [33]: the first denotes the strong topological in-
dex given by the Chern number ν characterizing the
two-dimensional px + ipy superfluid, and takes values
ν = 0,±1, see Fig. 2a. In addition, the system exhibits
two weak topological indices [39, 40], which we denote



4

as νx = 0, 1 and νy = 0, 1. The latter quantities is the
topological index, which characterizes the appearance
of Majorana modes in Kitaev’s Majorana wire [32],
and can be finite in px superfluids as well as chiral
px + ipy superfluids. It is important to stress that the
phase boundaries for the topological phase transitions
are independent of the strength of the superfluid order
parameters, and they only depend on the topology of
the Fermi surface. Therefore, we can distinguish be-
tween three different regions, see Fig. 2a: region (I)
with a closed Fermi surface, region (II) with an open
Fermi surface, and finally the strong pairing regime
(III), where in absence of interactions the system is in
a trivial band insulating (vacuum) state. In the lat-
ter region (III), the superfluids exhibit no topological
order with ν = νx = νy = 0; thus it is not of interest
in the following.

The combination of the topological indices with the
superfluid order parameter allows us now to character-
ize the different phases. We use the notation SFν:νxνy

for time-reversal invariant superfluids and cSFν:νxνy

for chiral superfluids. First, we start with the chiral
px + ipx superfluid. Here, we obtain two fundamen-
tally different topological phases, see Fig. 2a: (I) the
strong topological superfluids cSF−1:00 and cSF1:11

with a finite Chern number ν = ±1. Within the
standard symmetry classification scheme [41–43], the
cSF±1:νxνy phase is in the symmetry class D (particle-
hole symmetry). It is a special property of this phase
that the weak indices depend on the chemical po-
tential, i.e., we obtain νx = νy = 1 for µ > 0 and
νx = νy = 0 for µ < 0. This property will strongly
influence the Majorana modes, see below. In region
(II), we find a weak topological superfluid in the sym-
metry class D (cSF0:01). On the other hand, for the
px superfluid, we obtain a weak topological superfluid
(SF0:01) in region (II) which belongs to the class BDI,
see Fig. 2a. While in the region with closed Fermi
surface (I) the superfluid phase becomes gapless with-
out any topological properties. For completeness, we
point out that the py superfluid is gapless in region
(I) and (II).

The full phase diagram is then obtained by combin-
ing the mean-field phase diagram in Fig. 2b with the
topological properties in Fig. 2a. Its details strongly
depend on the strength of the coupling parameters.
Here, we are mainly interested in strong couplings
with g2/γ ∼ tx, ty with large superfluid gaps. Most
remarkably, we find that for γtx/g

2 = 1.5 all of the
above discussed topological phases are realized for
varying values of µ/tx and ty/tx, see Fig. 2.

MAJORANA MODES AT EDGE
DISLOCATIONS

Associated with the topological index, we expect
the appearance of Majorana modes at topological de-
fects in the system. Here, such topological defects can

either be vortices or — as a distinct feature of the lat-
tice setup — also lattice dislocations. The majorana
modes are most conveniently derived as zero energy
modes of the quadratic Hamiltonian

H = −
∑
〈ij〉

(
tijc
†
i cj + ∆ijcicj + h.c.

)
−µ

∑
i

c†i ci (7)

with the symmetry properties of the gap determined
by mean-field theory. The the spatial dependence of
the gap allows to imprint vortices, while dislocations
are directly implemented into the lattice structure.
Generally, we expect the Majorana modes in the vor-
tex core for Chern number ν = ±1, while the weak
index νx,y gives rise to Majorana modes localized at
lattice dislocations with Burgers vector ±ex,y. The
latter can be easily understood in the limit ty = 0,
where the system reduces to coupled one-dimensional
wires: then, a pair of dislocations corresponds to the
inclusion/removal of a one-dimensional wire of finite
length into the bulk 2D system, see Fig. 3a. This
bulk superfluid induces a p-wave superfluid onto this
single chain realizing the ideal toy model of a single
Majorana chain [32]; this behavior is in analogy to
the proposals for the realisation of Majorana modes
in solid state systems [8, 9].

The existence of Majorana modes is most conve-
niently verified using the Bogoliubov-de-Gennes equa-
tion, which can be efficiently solved numerically, an
example is illustrated in Fig. 3a. In summary, we find
for the cSF1:νxνy phase Majorana modes in the core
of vortices. Most remarkably, the system also exhibits
Majorana modes at edge dislocations ex,y, but only
for positive chemical potential µ > 0 with a finite
weak topological index νx = νy = 1. Similarly, the
cSF0:01 and SF0:01 only exhibit Majorana modes at
edge dislocations with Burgers vector ±ey. Neverthe-
less, the two phases show distinct features due to their
different symmetry classification: for the chiral phase
cSF0:01 in symmetry class D, the topological index is
a Z2 index. Therefore, a pair of double dislocations
with Burgers vector ±2ex,y leads to a hybridization
of the Majorana modes, and consequently no ground
state degeneracy. In turn, the time reversal symmet-
ric phase SF0:01 is in the symmetry class BDI, which
gives rise to a Z topological index. Consequently, a
pair of double dislocations essentially describes a two
wire setup and provides four Majorana modes with a
four-fold ground state degeneracy. This behavior is
well confirmed within the numerical solution of the
Bogoliubov-de-Gennes equations.

BRAIDING OF NON-ABELIAN ANYONS

In cold atomic gases, an edge dislocation corre-
sponds to a vortex in the optical field generating the
optical lattice [44]. Such edge dislocations are most
conveniently generated in a setup with local site ad-
dressability [34, 35, 45], where arbitrary shapes of the
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FIG. 3. Braiding of dislocation based Majorana modes as touchstone of non-Abelian statistics. a, Majorana
modes at lattice dislocations: an edge dislocation pair with Burgers vector ±ey (black arrow) forming a single quantum
wire (red line) immersed into the bulk superfluid. For a finite weak topological index νy = 1 such a setup generates
two Majorana modes at the end of the wire. The localized wave function of the two Majorana modes is determined by
solving the quadratic theory (see methods section) in a parameter regime with νy = 1 (see Fig. 2b) on the shown lattice
geometry by means of a Bogoliubov transformation. The radii of the blue circles are proportional to the square of the
Majorana modes’ wave function. b, Four Majorana modes are generated by the formation of two dislocation pairs, and
then spatially separated: first along path 1 and subsequently along path 2. c, The braiding operation is achieved by
recombining the Majorana modes along path 3 and then path 4. d, The braiding transforms the initially unoccupied
state at each dislocation pair into an occupied fermion mode. The subsequent measurement of the unpaired fermions is
a unique signature of the non-Abelian braiding statistics of the Majorana modes.

lattice can be achieved. In combination with a time
dependent modulation of the masks generating the
lattice, a full spatial and temporal control on edge
dislocations is foreseeable in the near future. Such a
setup then offers the opportunity for the observation
of the non-Abelian statistics of Majorana modes by
braiding the dislocations. While the braiding of vor-
tices in a superfluid has previously been predicted for
the observation of the non-Abelian statistics [46, 47],
such experiments suffer from the difficulty to control
a collective degree of freedom such as the superfluid
phase, and the problem to insert adiabatically vortices
into a superfluid. Here, edge dislocations in the lattice
are much more favorable due to the precise and simple
control on lattice structures available in cold atomic
gases. Additionally, the lattice eliminates the local-
ized subgap states which occur at energies of small
fractions of the bulk gap in the vortices of continuum
p-wave superfluids, and which may render braiding
experiments difficult to realize in neutral superfluids
[48, 49].

In the following, we present the protocol for mea-
suring the non-Abelian statistics of the Majorana
fermions, see Fig. 3b-d. It is important that all opera-
tions are performed adiabatically, i.e., slower than the
characteristic time scale given by the superfluid gap.

(a) In a first step, we initialize the system by adi-
abatically creating two dislocation pairs. At each
pair, we obtain a single fermionic mode described
by the operators c†r,b with a finite energy gap. This
fermion mode is unoccupied as at low temperatures
all fermions are Cooper paired. The next step sep-
arates the two dislocation pairs first along path 1
and then along path 2. This operation splits the
fermionic modes into Majorana modes localized at
the edge dislocations, and gives rise to a four-fold de-
generate ground state of which two are accessible at
fixed fermion number parity. However, adiabaticity
of the process ensures a well defined initial state with

cr,b|g〉 = 0.

(b) Next, we perform the braiding by recombin-
ing the two dislocation pairs along path 3 and finally
path 4. This process corresponds to moving the two
Majorana modes around each other. According to
the general non-Abelian braiding rules for Majorana
modes [50], this transforms the fermionic operators

via cr,b → c†r,b; here, we drop a phase factor, which
is irrelevant for the protocol. As a consequence, the
initially unoccupied state becomes occupied by one
fermion each, i.e. c†r,b|g〉 = 0. In a physical pic-
ture, the braiding operation takes one Cooper pair
from the superfluid condensate and splits it into two
fermions with one residing at each dislocation pair.
It is the strength of the non-abelian braiding statis-
tics, that this characteristic signature is independent
on the braiding path, as well as any dynamical phases
picked up during the adiabatic motion. We tested,
that the numerically, that the gap remains always on
the order of the superfluid gap for the full braiding
protocol.

To probe the system one ramps the energy differ-
ence of the molecular state to the free fermionic states
~ω to negative values, which drives the system into
the strong pairing phase with all paired fermions re-
siding in the center of the plaquettes. This procedure
is the analogue to the process of forming pairs via a
Feshbach resonance [36]. Finally, a measurement of
the fermionic density on the original lattice sites [34]
probes the unpaired fermions in the system. Here,
we expect one unpaired fermion at each dislocation
pair. In order to test the protocol against induced
noise, finite temperature, or violation of adiabaticity,
one can test the process against a background mea-
surement with a reversed order of path 3 and 4. Since
this process does not braid the two Majorana modes,
no unpaired fermions should be present in an ideal
experiment.
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METHODS

Topological Indices. The topological classifica-
tion of quadratic fermionic theories is based on their
membership in one of the ten Altland-Zirnbauer sym-
metry classes [41–43]. Perturbations that neither vi-
olate these symmetries nor close the gap cannot alter
the topological class of the theory. In particular, there
is no necessity for translational symmetry, which, in
fact, is one of the peculiarities of topological phases.
Nevertheless, the only viable labelling scheme for such
phases makes use of topological invariants that are de-
fined as functionals of the momentum space represen-
tation of the theory under consideration. Hence the
mathematical machinery enforces us to fall back to
translationally invariant theories to obtain the topo-
logical invariants (“labels”) which then characterize
the topological phases even in the case of weak disor-
der.

The momentum space representation of our theory
reads

H =
1

2

∑
q

Ψ†qHqΨq where Ψq =

(
cq
c†−q

)
(8)

and, for a finite excitation gap Eq 6= 0, the Hamil-
tonian can be parametrized by a (normalized) Bloch
vector ~nq,

Hq =

(
εq ∆q

∆∗q −εq

)
= Eq~nq · ~σ (9)

where ~σ denotes the vector of Pauli matrices. The
Bloch vector defines a continuous mapping n : T 2 →
S2 with q 7→ ~nq from the first Billouin zone T 2 (the
torus) to the Bloch sphere S2. The (strong) topologi-
cal index ν ∈ Z is the integral of the Berry curvature
over the Brillouin zone T 2 and given by the first Chern
number

ν =
1

4π

∫
T 2

dq ~nq ·
(
∂qx~nq × ∂qy~nq

)
. (10)

It can be interpreted as the winding or Skyrmion num-
ber of the vector field ~nq as q wraps around the torus.

The weak topological indices νx, νy ∈ Z2 are given
by the Berry phase along paths through the high sym-
metry points (qx, qy) = (π, 0), (π, π) [for νx] and (0, π),
(π, π) [for νy], respectively. They can be interpreted
as winding numbers of ~nq about the origin since the
Bloch vector is constrained to a great circle on the
paths through the high symmetry points. This wind-
ing number is easily calculated via

νx =
1

2π

∣∣∣∣∫ 2π

0

dqy
(
~nq × ∂qy~nq

)∣∣∣∣ for qx = π (11)

and analogously for νy. The strong and weak topo-
logical phases of our two dimensional theory are then
completely classified by the triple ν : νxνy [33] which
gives rise to our notation in Fig. 2.

a b c

FIG. 4. Microscopic setup. a, The lattice sites |i〉 are
coupled to two different internal states trapped in the cen-
ter of the plaquette. The first one |0, ↑〉p exhibits an s-
wave orbital symmetry, while the second one |α, ↓〉p shows
a p-wave symmetry and is two-fold degenerate. b, Sin-
gle particle level structure with the relevant transitions
(solid lines). The additional transitions (dashed lines) are
required for the design of the desired coupling Hamilto-
nian. c, Energy levels for the two-particle states with the
two interfering paths: |ψ〉 describes the state with two
fermions on the lattice sites surrounding the plaquette,
while |ψ̃〉 = (A†

pB
†
αp − Ā†

pB̄
†
αp)|ψ〉 describes the near reso-

nant repulsively bound molecule with p-wave symmetry.

Microscopic setup. The fermionic states de-
scribed by the operators ci (c†i ) reside on the sites of
the optical lattice and are in the lowest Bloch band.
The design of the interaction requires the coupling of
these states to different internal states trapped by an
optical lattice with the minima in the center of the pla-
quettes. Such a setup is most conveniently achieved
for cold atomic gases with a metastable 3P2 state such
as 87Sr or 171Yb. Then, the metastable 3P2 states are
trapped at the sites of the lattice, while the ground
state 1S0 is trapped in the center of the plaquette
for an optical lattice close to the anti-magic wave-
length. Therefore, the setup requires only a single
two-dimensional optical lattice. In addition, light as-
sisted two-particle losses from the metastable 3P2 are
quenched due to the fermionic statistic.

Next, we focus on the state trapped in the center
of the plaquette. We are interested in two different
hyperfine states in the electronic the ground state
1S0, which will be denoted by a spin index σ with
σ ∈ {↓, ↑}, and a setup with suppressed tunneling be-
tween different plaquettes. The lowest lying state at
each plaquette p exhibits s-wave symmetry and will be
denoted as |0, σ〉p, while the first excited state |α, σ〉p
with α ∈ {x, y} is two fold degenerate and exhibits a
p-wave symmetry, see Fig. 4b.

The coupling between the states on the lattice to
the center of the plaquette is driven by two Ra-
man transitions.[? ] The first Raman transition
with detuning δa couples to the state |0, ↑〉p provid-
ing the Hamiltonain Ha = wa

∑
p(A

†
p + Ap) with

A†p = a†p (c1 + c2 + c3 + c4), and the operator a†p cre-
ating a fermion in the state |0, ↑〉p. The coupling
strength wa accounts for the Rabi frequency as well
as the wave function overlap. Note that the form
of the coupling is determined by the s-wave sym-
metry of the state |0, ↑〉p. In analogy, the second
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Raman transition couples to the states |α, ↓〉p with
fermionic operators b†αp (α ∈ {x, y}) and the detun-
ing δb. In order to simplify the discussion, we set
δb = −δa and wa = wb. Then, the coupling Hamil-
tonian reduces to Hb = wb

∑
pα(B†αp + Bαp) with

B†x,yp = b†x,yp (c1 ± c2 − c3 ∓ c4). Note, the different
couplings due to the orbital p-wave symmetry of the
states |α, ↓〉p.

The main idea for the design of the interaction is
now the fact, that the state a†pb

†
αp|0〉 with two fermions

in the center of the plaquette exhibits a strong onsite
interaction U due to the s-wave scattering between
two different hyperfine states. Within the rotating
frame its energy is given by ~ω = δa + δb + U = U ,
see Fig. 4c. This motivates the introduction of two
bosonic molecular states X†p = a†pb

†
xp and Y †p = a†pb

†
yp

exhibiting orbital p-wave symmetry. For a choice of
the detunings with ~|ω| � |δa|, we can then adia-
batically eliminate all states with a single fermion in
the center of the plaquette and arrive at the effective
coupling Hamiltonian

Hc = ḡ
∑
p,α

[
B†αpA

†
p +ApBαp

]
, (12)

with ḡ = |wa|2U/(U2 − δ2
a). Note, that we have omit-

ted additional terms describing an induced hopping
of the fermionic operators ci; these terms will be dis-
cussed below. The resonant coupling of the fermionic
states ci to the p-wave molecules Xp and Yp residing
in the center of the plaquette reduces to

B†xpA
†
p = 2X†p [c2c3 − c4c1 + c1c3 + c2c4] , (13)

B†ypA
†
p = 2Y †p [c1c2 − c3c4 + c1c3 − c2c4] . (14)

This coupling term differs from the desired interaction
in Eq. (2); the last two terms, describe a second rep-
resentation of the p-wave symmetry for the coupling.
While this coupling Hamiltonian gives rise to inter-
esting p-wave superfluids, it is desirable to suppress
these additional coupling terms.

In the following, we present a scheme, which com-
pletely quenches these terms, while for an experimen-
tal realisation it is sufficient to weakly suppress them.
The scheme is achieved by an additional transition
with opposite detunings but equal coupling strengths,
where the phase is spatially varying. The main re-
quirement on the phase is, that the coupling to the
state c1 exhibits the opposite sign than the coupling
to c2, while c1 and c3 have the same sign. The de-
sired behaviour is achieved employing the principles of
Ref. [51], by adding Raman lasers with a contribution
of the wave vector k‖ within the plane of the optical
lattice; i.e., k‖ = k0(ex − ey) with k0 the wavelength
of the square lattice potential. (By contrast, the Ra-
man lasers for transitions A†p, B

†
p must be incident at a

right angle to the system.) Then, we obtain the addi-
tional coupling terms Ā†p = a†p (c1 − c2 + c3 − c4) and

B̄†x,yp = b†x,yp (c1 ∓ c2 − c3 ± c4). The full coupling

Hamiltonian exhibits interference between the two in-
dependent excitation channels for the molecules, see
Fig. 4c, and reduces to

Hc = ḡ
∑
p,α

[
B†αpA

†
p − B̄†αpĀ†p + h.c.

]
, (15)

which reduces to the desired coupling in Eq. (2) with
~ω = U and g = 4ḡ = 4|wa|2U/(U2 − δ2

a). In addi-
tion, the induced hopping terms via the single exci-
tation in the center of the plaquette reduces to an
additional conventional hopping as in Eq. (1) with
tx = ty = 2|wa|2/δa. Its interference with the di-
rect hopping allows us to tune the ratios g/U and t/U
independently.
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