1,412 research outputs found
High Energy Gamma-Ray Emission From Blazars: EGRET Observations
We will present a summary of the observations of blazars by the Energetic
Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory
(CGRO). EGRET has detected high energy gamma-ray emission at energies greater
than 100 MeV from more that 50 blazars. These sources show inferred isotropic
luminosities as large as ergs s. One of the most
remarkable characteristics of the EGRET observations is that the gamma-ray
luminosity often dominates the bolometric power of the blazar. A few of the
blazars are seen to exhibit variability on very short time-scales of one day or
less. The combination of high luminosities and time variations seen in the
gamma-ray data indicate that gamma-rays are an important component of the
relativistic jet thought to characterize blazars. Currently most models for
blazars involve a beaming scenario. In leptonic models, where electrons are the
primary accelerated particles, gamma-ray emission is believed to be due to
inverse Compton scattering of low energy photons, although opinions differ as
to the source of the soft photons. Hardronic models involve secondary
production or photomeson production followed by pair cascades, and predict
associated neutrino production.Comment: 16 pages, 7 figures, style files included. Invited review paper in
"Observational Evidence for Black Holes in the Universe," 1999, ed. S. K.
Chakrabarti (Dordrecht: Kluwer), 215-23
On CSP and the Algebraic Theory of Effects
We consider CSP from the point of view of the algebraic theory of effects,
which classifies operations as effect constructors or effect deconstructors; it
also provides a link with functional programming, being a refinement of Moggi's
seminal monadic point of view. There is a natural algebraic theory of the
constructors whose free algebra functor is Moggi's monad; we illustrate this by
characterising free and initial algebras in terms of two versions of the stable
failures model of CSP, one more general than the other. Deconstructors are
dealt with as homomorphisms to (possibly non-free) algebras.
One can view CSP's action and choice operators as constructors and the rest,
such as concealment and concurrency, as deconstructors. Carrying this programme
out results in taking deterministic external choice as constructor rather than
general external choice. However, binary deconstructors, such as the CSP
concurrency operator, provide unresolved difficulties. We conclude by
presenting a combination of CSP with Moggi's computational {\lambda}-calculus,
in which the operators, including concurrency, are polymorphic. While the paper
mainly concerns CSP, it ought to be possible to carry over similar ideas to
other process calculi
Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration
Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies
Long gamma-ray bursts and core-collapse supernovae have different environments
When massive stars exhaust their fuel they collapse and often produce the
extraordinarily bright explosions known as core-collapse supernovae. On
occasion, this stellar collapse also powers an even more brilliant relativistic
explosion known as a long-duration gamma-ray burst. One would then expect that
long gamma-ray bursts and core-collapse supernovae should be found in similar
galactic environments. Here we show that this expectation is wrong. We find
that the long gamma-ray bursts are far more concentrated on the very brightest
regions of their host galaxies than are the core-collapse supernovae.
Furthermore, the host galaxies of the long gamma-ray bursts are significantly
fainter and more irregular than the hosts of the core-collapse supernovae.
Together these results suggest that long-duration gamma-ray bursts are
associated with the most massive stars and may be restricted to galaxies of
limited chemical evolution. Our results directly imply that long gamma-ray
bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9
February 2006, online publication 10 May 2006. Supplementary material
referred to in the text can be found at
http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new
version contains minor changes to match the final published versio
Improved Measurement of the Pseudoscalar Decay Constant
We present a new determination of the Ds decay constant, f_{Ds} using 5
million continuum charm events obtained with the CLEO II detector. Our value is
derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of
0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6
+/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We
compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Differences in the semantics of prosocial words: an exploration of compassion and kindness
The study of prosocial behaviour has accelerated greatly in the last 20 years. Researchers are exploring different domains of prosocial behaviour such as compassion, kindness, caring, cooperation, empathy, sympathy, love, altruism and morality. While these constructs can overlap, and are sometimes used interchangeably, they also have distinctive features that require careful elucidation. This paper discusses some of the controversies and complexities of describing different (prosocial) mental states, followed by a study investigating the differences between two related prosocial concepts: compassion and kindness. For the study, a scenario-based questionnaire was developed to assess the degree to which a student (N = 222) and a community (N = 112) sample judged scenarios in terms of compassion or kindness. Subsequently, participants rated emotions (e.g. sadness, anxiety, anger, disgust, joy) associated with each scenario. Both groups clearly distinguished kindness from compassion in the scenarios on the basis of suffering. In addition, participants rated compassion-based scenarios as significantly higher on sadness, anger, anxiety and disgust, whereas kindness-based scenarios had higher levels of joy. As a follow-up, a further sample (29 male, 63 female) also rated compassionate scenarios as involving significantly more suffering compared to the kindness scenarios. Although overlapping concepts, compassion and kindness are clearly understood as different processes with different foci, competencies and emotion textures. This has implications for research in prosocial behaviour, and the cultivation of kindness and compassion for psychotherapy and in general.N/
Observational and Physical Classification of Supernovae
This chapter describes the current classification scheme of supernovae (SNe).
This scheme has evolved over many decades and now includes numerous SN Types
and sub-types. Many of these are universally recognized, while there are
controversies regarding the definitions, membership and even the names of some
sub-classes; we will try to review here the commonly-used nomenclature, noting
the main variants when possible. SN Types are defined according to
observational properties; mostly visible-light spectra near maximum light, as
well as according to their photometric properties. However, a long-term goal of
SN classification is to associate observationally-defined classes with specific
physical explosive phenomena. We show here that this aspiration is now finally
coming to fruition, and we establish the SN classification scheme upon direct
observational evidence connecting SN groups with specific progenitor stars.
Observationally, the broad class of Type II SNe contains objects showing strong
spectroscopic signatures of hydrogen, while objects lacking such signatures are
of Type I, which is further divided to numerous subclasses. Recently a class of
super-luminous SNe (SLSNe, typically 10 times more luminous than standard
events) has been identified, and it is discussed. We end this chapter by
briefly describing a proposed alternative classification scheme that is
inspired by the stellar classification system. This system presents our
emerging physical understanding of SN explosions, while clearly separating
robust observational properties from physical inferences that can be debated.
This new system is quantitative, and naturally deals with events distributed
along a continuum, rather than being strictly divided into discrete classes.
Thus, it may be more suitable to the coming era where SN numbers will quickly
expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most
welcom
First Observation of and Decays
We have observed new channels for decays with an in the final
state. We study 3-prong tau decays, using the and
\eta\to 3\piz decay modes and 1-prong decays with two \piz's using the
channel. The measured branching fractions are
\B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau})
=(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to
\pi^{-}2\piz\eta\nu_{\tau}
=(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for
substructure and measure \B(\tau^{-}\to
f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also
searched for production and obtain 90% CL upper limits
\B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to
\pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …
