5,542 research outputs found

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    New Role, New Country: introducing US physician assistants to Scotland

    Get PDF
    This paper draws from research commissioned by the Scottish Executive Health Department (SEHD). It provides a case study in the introduction of a new health care worker role into an already well established and "mature" workforce configuration It assesses the role of US style physician assistants (PAs), as a precursor to planned "piloting" of the PA role within the National Health Service (NHS) in Scotland

    Dental Occlusion in a Split Amazon Indigenous Population: Genetics Prevails over Environment

    Get PDF
    Background: Studies examining human and nonhuman primates have supported the hypothesis that the recent increase in the occurrence of misalignment of teeth and/or incorrect relation of dental arches, named dental malocclusion, is mainly attributed to the availability of a more processed diet and the reduced need for powerful masticatory action. For the first time on live human populations, genetic and tooth wear influences on occlusal variation were examined in a split indigenous population. The Arara-Iriri people are descendants of a single couple expelled from a larger village. In the resultant village, expansion occurred through the mating of close relatives, resulting in marked genetic cohesion with substantial genetic differences. Methodology/Principal Findings: Dental malocclusion, tooth wear and inbreeding coefficient were evaluated. The sample examined was composed of 176 individuals from both villages. Prevalence Ratio and descriptive differences in the outcomes frequency for each developmental stage of the dentition were considered. Statistical differences between the villages were examined using the chi-square test or Fisher’s exact statistic. Tooth wear and the inbreeding coefficient (F) between the villages was tested with Mann-Whitney statistics. All the statistics were performed using two-tailed distribution at p#0.05. The coefficient inbreeding (F) confirmed the frequent incestuous unions among the Arara-Iriri indigenous group. Despite the tooth wear similarities, we found a striking difference in occlusal patterns between the two Arara villages. In the original village, dental malocclusion was present in about one third of the population; whilst in the resultant village, the occurrence was almost doubled. Furthermore, the morphological characteristics of malocclusion were strongly different between the groups. Conclusions/Significance: Our findings downplay the widespread influence of tooth wear, a direct evidence of what an individual ate in the past, on occlusal variation of living human populations. They also suggest that genetics plays the most important role on dental malocclusion etiology

    Bayesian optimization for materials design

    Full text link
    We introduce Bayesian optimization, a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian process regression, which allows predicting the performance of a new design based on previously tested designs. After providing a detailed introduction to Gaussian process regression, we introduce two Bayesian optimization methods: expected improvement, for design problems with noise-free evaluations; and the knowledge-gradient method, which generalizes expected improvement and may be used in design problems with noisy evaluations. Both methods are derived using a value-of-information analysis, and enjoy one-step Bayes-optimality

    A molecular cell biology toolkit for the study of meiosis in the silkworm Bombyx mori

    Get PDF
    Meiosis is usually described as 4 essential and sequential processes: (1) homolog pairing; (2) synapsis, mediated by the synaptonemal complex; (3) crossing over; and (4) segregation. In this canonical model, the maturation of crossovers into chiasmata plays a vital role in holding homologs together and ensuring their segregation at the first meiotic division. However, Lepidoptera (moths and butterflies) undergo 3 distinct meiotic processes, only one of which is canonical. Lepidoptera males utilize 2 meiotic processes: canonical meiosis that produces nucleated fertile sperm, and a noncanonical meiosis that produces anucleated nonfertile sperm which are nonetheless essential for reproduction. Lepidoptera females, which carry heteromorphic sex chromosomes, undergo a completely achiasmate (lacking crossovers) meiosis, thereby requiring an alternative mechanism to ensure proper homolog segregation. Here, we report that the development of a molecular cell biology toolkit designed to properly analyze features of meiosis, including the synaptonemal complex structure and function, in the silkworm Bombyx mori. In addition to standard homology searches to identify Bombyx orthologs of known synaptonemal complex encoding genes, we developed an ortholog discovery app (Shinyapp) to identify Bombyx orthologs of proteins involved in several meiotic processes. We used this information to clone genes expressed in the testes and then created antibodies against their protein products. We used the antibodies to confirm the localization of these proteins in normal male spermatocytes, as well as using in vitro assays to confirm orthologous interactions. The development of this toolkit will facilitate further study of the unique meiotic processes that characterize meiosis in Lepidoptera.</p

    The imperialist claws of MetaCapitalism

    Get PDF
    The information and industrial revolutions are so different and yet similar. Both enjoyed the emergence of accounting measurement and management techniques which privileged the efficient allocation of resources as the principal imperative to a firm\u27s participation in a free market economy. MetaCapitalism is one such corporate change strategy which promised untold wealth and unprecedented growth, and under that guise a predatory Darwinistic corporate strategy was implemented. Fundamentally, it promotes extreme outsourcing and downsizing of human capital, de-capitalisation of all non-core capital assets and the diminished role of the State in the global free market economy. Yet the most disturbing aspect is its complete and total disregard for even the slightest social or public policy implications. Essentially then, its most salient danger is an unmistakable endorsement of a fundamentalist brand of value free, reckless capitalism that is ultimately detrimental not only to the long-term business interest, but human as well. One of the main findings of evaluating the Fortune 100 companies\u27 performance in implementing MetaCapitalism was the resulting monopolies. Lenin described monopolies as essential to imperialism which is the highest stage of capitalism. The parallels between the resulting monopolies under MetaCapitalism, and what Lenin described as the final stage of Capitalism are poignant. I would like to draw upon those parallels in the hope that earlier work might enlighten our understanding and inform our critique of MetaCapiatlism

    Anomalous small angle x-ray scattering simulations: proof of concept for distance measurements for nanoparticle-labelled biomacromolecules in solution.

    Get PDF
    Anomalous small angle X-ray scattering can in principle be used to determine distances between metal label species on biological molecules. Previous experimental studies in the past were unable to distinguish the label-label scattering contribution from that of the molecule, because of the use of atomic labels; these labels contribute only a small proportion of the total scattering signal. However, with the development of nanocrystal labels (of 50-100 atoms) there is the possibility for a renewed attempt at applying anomalous small angle X-ray scattering for distance measurement. This is because the contribution to the scattered signal is necessarily considerably stronger than for atomic labels. Here we demonstrate through simulations, the feasibility of the technique to determine the end-to-end distances of labelled nucleic acid molecules as well as other internal distances mimicking a labelled DNA binding protein if the labels are dissimilar metal nanocrystals. Of crucial importance is the ratio of mass of the nanocrystals to that of the labelled macromolecule, as well as the level of statistical errors in the scattering intensity measurements. The mathematics behind the distance determination process is presented, along with a fitting routine than incorporates maximum entropy regularisation
    • …
    corecore