18 research outputs found
Wetland buffers are no substitute for landscape-scale conservation
Wetlands in farmland are at risk of contamination by fertilizers and pesticides. One recommendation for reducing wetland contamination is to maintain a buffer of contiguous uncropped land around the wetland (a wetland buffer). Many agricultural water protection policies around the world recommend 5 to 50-m wide uncropped buffers around water bodies, but it is unclear how large wetland buffers must be to effectively protect against these chemicals. In addition, it is unclear whether wetland buffers have similar—or stronger—effects on fertilizer and pesticide contamination than reducing the amount of cropped land within the larger landscape context around wetlands. Our study, conducted across 37 wetlands in eastern Ontario, Canada, addressed the following questions: (1) Does increasing buffer width, or increasing the amount of contiguous uncropped land within recommended buffer width guidelines, reduce nutrient and pesticide levels in agricultural wetlands? (2) Does increasing uncropped land cover in the broader landscape reduce nutrient and pesticide levels in agricultural wetlands? and (3) What is the relative importance of buffer size and landscape-scale uncropped cover for reducing nutrient and pesticide levels in agricultural wetlands? A rigorous site selection process was employed to minimize the correlation between buffer size and landscape-scale uncropped cover, minimize spatial gradients in these predictor variables, and minimize variation in potentially confounding variables. We obtained nutrient and pesticide data by collecting water samples from each wetland under similar weather conditions in June–July 2015. Nitrate concentrations were measured using ion chromatography, and atrazine and neonicotinoid (pesticide) concentrations using a combination of high-performance liquid chromatography and mass spectrometry. We found that nitrate, atrazine, and neonicotinoid concentrations in study wetlands were unaffected by wetland buffer size. However, concentrations of each chemical decreased with uncropped land cover in the surrounding 150 to 300-m radius landscapes. To effectively protect w
iTRAQ‐based proteomic and bioinformatic characterization of human mast cells upon infection by the influenza A virus strains H1N1 and H5N1
Analysis of native amino acids by liquid chromatography/electrospray ionization mass spectrometry: comparative study between two sources and interfaces
Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study
Background: Very high levels of prenatal maternal mercury have adverse effects on the developing fetal brain. It has been suggested that all possible sources of mercury should be avoided. However, although seafood is a known source of mercury, little is known about other dietary components that contribute to the overall levels of blood mercury. Objective: Our goal was to quantify the contribution of components of maternal diet to prenatal blood mercury level. Methods: Whole blood samples and information on diet and sociodemographic factors were collected from pregnant women (n = 4,484) enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). The blood samples were assayed for total mercury using inductively coupled plasma dynamic reaction cell mass spectrometry. Linear regression was used to estimate the relative contributions of 103 dietary variables and 6 sociodemographic characteristics to whole blood total mercury levels (TBM; untransformed and log-transformed) based on R(2) values. Results: We estimated that maternal diet accounted for 19.8% of the total variation in ln-TBM, with 44% of diet-associated variability (8.75% of the total variation) associated with seafood consumption (white fish, oily fish, and shellfish). Other dietary components positively associated with TBM included wine and herbal teas, and components with significant negative associations included white bread, meat pies or pasties, and french fries. Conclusions: Although seafood is a source of dietary mercury, seafood appeared to explain a relatively small proportion of the variation in TBM in our UK study population. Our findings require confirmation, but suggest that limiting seafood intake during pregnancy may have a limited impact on prenatal blood mercury levels. Citation: Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R. 2013. Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121:1214–1218; http://dx.doi.org/10.1289/ehp.120611
