521 research outputs found

    Stellar science from a blue wavelength range - A possible design for the blue arm of 4MOST

    Get PDF
    From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small-scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal-poor stars, and allow for studies of heavy elements (Z>38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal-poor stars. This means that some elements cannot be studied in the visual-redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi-object spectrograph commissioned for the ESO VISTA 4m-telescope. We focus here on high-density, wide-area survey of stars and the science that can be achieved with high-resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high-resolution spectrograph, we find that a sampling of >2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393-436 nm, is the most well-balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (+/-0.1 dex) in the blue and allow us to confront the outlined scientific questions. (abridged)Comment: 14 pages, 8 figures, accepted for publication in A

    A new algorithm for optimizing the wavelength coverage for spectroscopic studies:Spectral Wavelength Optimization Code (swoc)

    Get PDF
    The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extra-galactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, including 4MOST, showing the method yields important design constraints to the wavelength regions

    Dynamics of viscoelastic membranes

    Get PDF
    We determine both the in-plane and out-of-plane dynamics of viscoelastic membranes separating two viscous fluids in order to understand microrheological studies of such membranes. We demonstrate the general viscoelastic signatures in the dynamics of shear, bending, and compression modes. We also find a screening of the otherwise two-dimensional character of the response to point forces due to the presence of solvent. Finally, we show that there is a linear, hydrodynamic coupling between the in-plane compression modes of the membrane and the out-of-plane bending modes in the case where the membrane separates two different fluids or environments

    R144 revealed as a double-lined spectroscopic binary

    Get PDF
    R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.Comment: Accepted for publication in MNRAS Letters, 5 pages, 3 figure

    The Juno Magnetic Field Investigation

    Get PDF
    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields andor sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft

    E-Leadership or “How to Be Boss in Instant Messaging?” The Role of Nonverbal Communication

    Get PDF
    Doing leadership in the virtual realm has now become a routine part of many leaders’ daily work, yet our understanding of how leadership is enacted in mediated contexts—especially in text-only channels—is very limited. By applying micro-level analysis to naturally occurring instant message conversations, this article exposes the strategies leaders employ to achieve a range of complex communication goals: to get the work done while fostering informality and collegiality and creating the sense of a real—and not virtual—collaboration between team members. The findings further our understanding in two domains: They provide empirical grounding for e-leadership theories by exposing practices from real-life interactions, and they contribute to discursive leadership literature by addressing nonverbal communication practices. The findings of the article could form the basis for management and leadership training by drawing attention to the linguistic and semiotic resources digital leaders have at their disposal in virtual work environments

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    Mental Health Diagnoses and Utilization of VA Non-Mental Health Medical Services Among Returning Iraq and Afghanistan Veterans

    Get PDF
    Over 35% of returned Iraq and Afghanistan veterans in VA care have received mental health diagnoses; the most prevalent is post-traumatic stress disorder (PTSD). Little is known about these patients’ use of non-mental health medical services and the impact of mental disorders on utilization. To compare utilization across three groups of Iraq and Afghanistan veterans: those without mental disorders, those with mental disorders other than PTSD, and those with PTSD. National, descriptive study of 249,440 veterans newly utilizing VA healthcare between October 7, 2001 and March 31, 2007, followed until March 31, 2008. We used ICD9-CM diagnostic codes to classify mental health status. We compared utilization of outpatient non-mental health services, primary care, medical subspecialty, ancillary services, laboratory tests/diagnostic procedures, emergency services, and hospitalizations during veterans’ first year in VA care. Results were adjusted for demographics and military service and VA facility characteristics. Veterans with mental disorders had 42–146% greater utilization than those without mental disorders, depending on the service category (all P < 0.001). Those with PTSD had the highest utilization in all categories: 71–170% greater utilization than those without mental disorders (all P < 0.001). In adjusted analyses, compared with veterans without mental disorders, those with mental disorders other than PTSD had 55% higher utilization of all non-mental health outpatient services; those with PTSD had 91% higher utilization. Female sex and lower rank were also independently associated with greater utilization. Veterans with mental health diagnoses, particularly PTSD, utilize significantly more VA non-mental health medical services. As more veterans return home, we must ensure resources are allocated to meet their outpatient, inpatient, and emergency needs

    A RAVE investigation on Galactic open clusters: II. Open cluster pairs, groups and complexes

    Get PDF
    © ESO, 2017. Context. It is generally agreed upon that stars form in open clusters (OCs) and stellar associations, but little is known about structures in the Galactic OC population; whether OCs and stellar associations are born isolated or if they prefer to form in groups, for example. Answering this question provides new insight into star and cluster formation, along with a better understanding of Galactic structures. Aims. In the past decade, studies of OC groupings have either been based solely on spatial criteria or have also included tangential velocities for identifications. In contrast to previous approaches, we assumed that real OC groupings occupy a well defined area in the sky and show similar velocity vectors. For the first time, we have used 6D phase-space information, including radial velocities from the RAdial Velocity Experiment (RAVE) and other catalogues, for the detection of OC groupings. We also checked the age spread of potential candidates to distinguish between genuine groupings and chance alignments. Methods. We explored the Catalogue of Open Cluster Data (COCD) and determined 6D phase-space information for 432 out of 650 listed OCs and compact associations. The group identification was performed using an adapted version of the Friends-of-Friends algorithm, as used in cosmology, with linking lengths of 100 pc and 10-20 km s-1. For the verification of the identified structures, we applied Monte Carlo simulations with randomised samples. Results. For the linking lengths 100 pc and 10 km s-1, we detected 19 groupings, including 14 pairs, 4 groups with 3-5 members, and 1 complex with 15 members. The Monte Carlo simulations revealed that, in particular, the complex is most likely genuine, whereas pairs are more likely chance alignments. A closer look at the age spread of the complex and the comparison between spatial distributions of young and old cluster populations suggested that OC groupings likely originated from a common molecular cloud

    A critical reflection of current trends in discourse analytical research on leadership across disciplines. A call for a more engaging dialogue

    Get PDF
    This paper takes the frequently lamented state of current leadership research in business and organisational sciences as a starting point and argues for a more open and engaging dialogue with leadership researchers in applied linguistics and pragmatics. Focusing on current debates around terminological issues and methodological questions that are particularly prominent in critical leadership studies, we show that research in applied linguistics and pragmatics has the potential to make important contributions by providing the analytical tools and processes to support critical leadership researchers in their quest to challenge hegemonic notions of leadership by moving beyond simplistic and often problematic leader-follower dichotomies and by providing empirical evidence to capture leadership in situ thereby feeding into current theorisations of leadership
    • …
    corecore