4,023 research outputs found
Estimation of turbulence in fan-rotor wakes for broadband noise prediction during acoustic preliminary design
When calculating broadband fan noise caused by rotor-stator wake interaction analytically, information about the airflow, particularly about the turbulence in the rotor wakes, is necessary. During the pre-design phase, two-dimensional streamline methods are commonly used. These provide only general flow quantities like mean-flow velocities or total-pressure losses. Turbulent parameters such as turbulent kinetic energy and turbulent integral length scale need to be deduced from these quantities. There are several models mentioned in the literature which correlate the wake size with the wake turbulence. But they usually comprise calibration factors that need to be assessed empirically by numerical simulations or measurements. The contribution of the paper is to present an updated semi-empirical model for rotor-wake turbulence quantities, derived on the basis of an extensive comparison of the model with measurements and numerical simulations on four different turbofan stages. A recalibration of the empirical factors improved the noise prediction by 8 dB, reaching an accuracy of 2 dB. In addition, it is shown, that the endwall flow is responsible for large variance in the noise prediction, and may have a contribution of up to 2 dB to the overall sound power
Myocarditis in Athletes Is a Challenge: Diagnosis, Risk Stratification, and Uncertainties
Presentation of myocarditis in athletes is heterogeneous and establishing the diagnosis is challenging with no current uniform clinical gold standard. The combined information from symptoms, electrocardiography, laboratory testing, echocardiography, cardiac magnetic resonance imaging, and in certain cases endomyocardial biopsy helps to establish the diagnosis. Most patients with myocarditis recover spontaneously; however, athletes may be at higher risk of adverse cardiac events. Based on scarce evidence and mainly autopsy studies and expert\u27s opinions, current recommendations generally advise abstinence from competitive sports ranging from a minimum of 3 to 6 months. However, the dilemma poses that (un)necessary prolonged disqualification of athletes to avoid adverse cardiac events can cause considerable disruption to training schedules and tournament preparation and lead to a decline in performance and ability to compete. Therefore, better risk stratification tools are imperatively needed. Using latest available data, this review contrasts existing recommendations and presents a new proposed diagnostic flowchart putting a greater focus on the use of cardiac magnetic resonance imaging in athletes with suspected myocarditis. This may enable cardiac caregivers to counsel athletes with suspected myocarditis more systematically and furthermore allow for pooling of more unified data. To modify recommendations regarding sports behavior in athletes with myocarditis, evidence, based on large multicenter registries including cardiac magnetic resonance imaging and endomyocardial biopsy, is needed. In the future, physicians might rely on combined novel risk stratification methods, by implementing both noninvasive and invasive tissue characterization methods
Orbit Selection for the Proposed Lynx Observatory Mission
The Advanced Concepts Office design team performed several analyses and trades in support of orbit selection for the proposed Lynx mission, an x-ray observatory being submitted to the Astro2020 Decadal Survey. Though the descriptions in this Technical Memorandum (TM) focus on the Lynx mission, the approach and process for selecting the final orbit is applicable to a variety of proposed science and exploration missions. To select the best orbit for the Lynx science, mission designers assembled a team of subsystem and discipline experts, in addition to mission analysts, to evaluate several candidate orbits. These discipline experts included members of the science and instrument team, power and avionics, thermal, propulsion, and environments. The goal was to clearly show the benefits and weaknesses of each orbit in the trade space and provide sound justification for the final selection. Discipline experts conducted trades and evaluated the results using a variety of methods including engineering judgement, rough estimates, and detailed calculations, and rolled the results into a final grade using a weighted grading method. The orbit options could then be ranked. The principal investigator (PI) for the mission, along with the science team, was given the task of final orbit selection. The result of the trades indicated that a halo orbit about the second Sun-Earth Lagrange point (SE-L2), similar to the planned orbit for the James Webb Space Telescope (JWST), was the best choice for the Lynx mission. Details of how the team arrived at this selection are below
Real-Time Control, Acquisition and Data Treatment for Beam Current Transformers in a Transfer Line
Particle beams are transferred from the 1 GeV Booster to the 26 GeV Proton Synchrotron and to an experimental area, ISOLDE. The characteristics of the beams and their destination change on a 1.2 s cycle basis. There are six beam current transformers to measure the beam intensities, i.e. the number of particles passing through the transfer lines. On each pulse of the Booster, a real-time system, called BTTR (Beam Transfer TRansformers), acquires the transformer values, selects the range, executes a calibration, and treats the data. Part of the treatment is the subtraction of the base-value, which includes systematic perturbations, acquired in the absence of beam. The system also handles asynchronous tasks, such as acquisition of base-value, readout of calibration factors and other diagnostic actions. The concept of the BTTR and its design are presented, as well as some practical results
Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations
We have measured resonance strengths and energies for dielectronic
recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3
core excitations in the electron-ion collision energy range 0-45 eV. All
measurements were carried out using the heavy-ion Test Storage Ring at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also
carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the
AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor
agreement between our experimental and theoretical resonance energies and
strengths. From 25 to 42 eV we find good agreement between the two for
resonance energies. But in this energy range the theoretical resonance
strengths are ~ 31% larger than the experimental results. This is larger than
our estimated total experimental uncertainty in this energy range of +/- 26%
(at a 90% confidence level). Above 42 eV the difference in the shape between
the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly
to the nl dependence of the detection probabilities of high Rydberg states in
the experiment. We have used our measurements, supplemented by our
AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate
coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is
estimated to be accurate to better than +/- 29% (at a 90% confidence level) for
k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted
to form in photoionized plasmas, significant discrepancies are found between
our experimentally-derived rate coefficient and previously published
theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller
than our experimental results over this temperature range
Pushforwards of pluricanonical bundles under morphisms to abelian varieties
Let f : X -> A be a morphism from a smooth projective variety to an abelian variety (over the field of complex numbers). We show that the sheaves f(*)omega(circle times m)(X) become globally generated after pullback by an isogeny. We use this to deduce a decomposition theorem for these sheaves when m >= 2, analogous to that obtained by Chen-Jiang when m = 1. This is in turn applied to effective results for pluricanonical linear series on irregular varieties with canonical singularities
Recommended from our members
Electron capture by Ne4+ ions from atomic hydrogen
Using the Oak Ridge National Laboratory ion-atom merged-beams apparatus, the absolute total electron-capture cross section has been measured for collisions of Ne4+ with hydrogen and deuterium at relative energies in the center-of-mass frame between 0.10 and 1006 eV/u. Comparison with previous measurements shows large discrepancies between 80 and 600 eV/u. For energies below ∼1 eV∕u, a sharply increasing cross section is attributed to the ion-induced dipole attraction between the reactants. Multichannel Landau-Zener calculations are performed between 0.01 and 5000 eV/u and compare well to the measured total cross sections. Below ∼5 eV∕u, the present total cross section calculations show a significant target isotope effect. At 0.01 eV/u, the H:D total cross section ratio is predicted to be ∼1.4 where capture is dominated by transitions into the Ne3+ (2s22p23d) configuration
The protein import apparatus of chloroplasts
Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle
Technical note: An assessment of the performance of statistical bias correction techniques for global chemistry–climate model surface ozone fields
State-of-the-art chemistry–climate models (CCMs) still show biases compared to ground-level ozone observations, illustrating the difficulties and challenges remaining in the simulation of atmospheric processes governing ozone production and loss. Therefore, CCM output is frequently bias-corrected in studies seeking to explore the health or environmental impacts from changing air quality burdens. Here, we assess four statistical bias correction techniques of varying complexities and their application to surface ozone fields simulated with four CCMs and evaluate their performance against gridded observations in the EU and US. We focus on two time periods (2005–2009 and 2010–2014), where the first period is used for development and training and the second to evaluate the performance of techniques when applied to model projections. We find that all methods are capable of significantly reducing the model bias. However, biases are lowest when we apply more complex approaches such as quantile mapping and delta functions. We also highlight the sensitivity of the correction techniques to individual CCM skill at reproducing the observed distributional change in surface ozone. Ensemble simulations available for one CCM indicate that model ozone biases are likely more sensitive to the process representation embedded in chemical mechanisms than to meteorology.</p
The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes
Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00429-013-0645-0) contains supplementary material, which is available to authorized users
- …