18,321 research outputs found

    Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

    Get PDF
    Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, anomalously expands. This expansion results from the combination of two effects induced by pair formation in a lattice potential: the suppression of quantum fluctuations as the attraction increases, which leads to a dominant role of entropy, and the progressive loss of the spin degree of freedom, which forces the gas to excite additional orbital degrees of freedom and expand to outer regions of the trap in order to maintain the entropy. The unexpected thermodynamics we observe reveal fundamentally distinctive features of pairing in the fermionic Hubbard model.Comment: 6 pages (plus appendix), 6 figure

    The serological Salmonella Monitoring in German pork production: the structure of the central database and preliminary results of a basic epidemiological report

    Get PDF
    Since 2002, the Qualitiäit und Srcherheit GmbH (QS GmbH) has earned out a serologrcal salmonella monrtonng in German finishrng pig herds. Thrs monitoring arms at reducing the risk of introducmg salmonella into the meat production charn caused by mfected slaughter pigs and to identify and to remove infection sources. For this purpose the farms are differentrated into three risk categories (I =low, II = mrddle, III = high) by their chance to introduce salmonella into the pork production cham All data generated withm the monitoring are entered mto the central database Qualiproo (Qualitype AG, Dresden)

    How does flow in a pipe become turbulent?

    Full text link
    The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by three-dimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We will also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.Comment: for the proceedings of statphys 2

    Statistical analysis of coherent structures in transitional pipe flow

    Get PDF
    Numerical and experimental studies of transitional pipe flow have shown the prevalence of coherent flow structures that are dominated by downstream vortices. They attract special attention because they contribute predominantly to the increase of the Reynolds stresses in turbulent flow. In the present study we introduce a convenient detector for these coherent states, calculate the fraction of time the structures appear in the flow, and present a Markov model for the transition between the structures. The fraction of states that show vortical structures exceeds 24% for a Reynolds number of about Re=2200, and it decreases to about 20% for Re=2500. The Markov model for the transition between these states is in good agreement with the observed fraction of states, and in reasonable agreement with the prediction for their persistence. It provides insight into dominant qualitative changes of the flow when increasing the Reynolds number.Comment: 11 pages, 26 (sub)figure

    Nanorheology of viscoelastic shells: Applications to viral capsids

    Full text link
    We study the microrheology of nanoparticle shells [Dinsmore et al. Science 298, 1006 (2002)] and viral capsids [Ivanovska et al. PNAS 101, 7600 (2004)] by computing the mechanical response function and thermal fluctuation spectrum of a viscoelastic spherical shell that is permeable to the surrounding solvent. We determine analytically the damped dynamics of the shear, bend, and compression modes of the shell coupled to the solvent both inside and outside the sphere in the zero Reynolds number limit. We identify fundamental length and time scales in the system, and compute the thermal correlation function of displacements of antipodal points on the sphere and the mechanical response to pinching forces applied at these points. We describe how such a frequency-dependent antipodal correlation and/or response function, which should be measurable in new AFM-based microrheology experiments, can probe the viscoelasticity of these synthetic and biological shells constructed of nanoparticles.Comment: 17 page

    Glucose availability and sensitivity to anoxia of isolated rat peripheral nerve

    Get PDF
    The contrast between resistance to ischemia and ischemic lesions in peripheral nerves of diabetic patients was explored by in vitro experiments. Isolated and desheathed rat peroneal nerves were incubated in the following solutions with different glucose availability: 1) 25 mM glucose, 2) 2.5 mM glucose, and 3) 2.5 mM glucose plus 10 mM 2-deoxy-D-glucose. Additionally, the buffering power of all of these solutions was modified. Compound nerve action potential (CNAP), extracellular pH, and extracellular potassium activity (aKe) were measured simultaneously before, during, and after a period of 30 min of anoxia. An increase in glucose availability led to a slower decline in CNAP and to a smaller rise in aKe during anoxia. This resistance to anoxia was accompanied by an enhanced extracellular acidosis. Postanoxic recovery of CNAP was always complete in 25 mM HCO3(-)-buffered solutions. In 5 mM HCO3- and in HCO3(-)-free solutions, however, nerves incubated in 25 mM glucose did not recover functionally after anoxia, whereas nerves bathed in solutions 2 or 3 showed a complete restitution of CNAP. We conclude that high glucose availability and low PO2 in the combination with decreased buffering power and/or inhibition of HCO3(-)-dependent pH regulation mechanisms may damage peripheral mammalian nerves due to a pronounced intracellular acidosis

    Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice

    Full text link
    Noise in a quantum system is fundamentally governed by the statistics and the many-body state of the underlying particles. Whereas for bosonic particles the correlated noise observed for e.g. photons or bosonic neutral atoms can still be explained within a classical field description with fluctuating phases, the anticorrelations in the detection of fermionic particles have no classical analogue. The observation of such fermionic antibunching is so far scarce and has been confined to electrons and neutrons. Here we report on the first direct observation of antibunching of neutral fermionic atoms. Through an analysis of the atomic shot noise in a set of standard absorption images, of a gas of fermionic 40K atoms released from an optical lattice, we find reduced correlations for distances related to the original spacing of the trapped atoms. The detection of such quantum statistical correlations has allowed us to characterise the ordering and temperature of the Fermi gas in the lattice. Moreover, our findings are an important step towards revealing fundamental fermionic many-body quantum phases in periodic potentials, which are at the focus of current research.Comment: (Nature, in press
    • …
    corecore