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We theoretically investigate the thermodynamics of an interacting inhomogeneous two-component

Fermi gas in an optical lattice. Motivated by a recent experiment by L. Hackermüller et al., Science 327,

1621 (2010), we study the effect of the interplay between thermodynamics and strong correlations on the

size of the fermionic cloud. We use dynamical mean-field theory to compute the cloud size, which in the

experiment shows an anomalous expansion behavior upon increasing attractive interaction. We confirm

this qualitative effect but, assuming adiabaticity, we find quantitative agreement only for weak inter-

actions. For strong interactions we observe significant nonequilibrium effects which we attribute to a

dynamical arrest of the particles due to increasing correlations.

DOI: 10.1103/PhysRevLett.110.075302 PACS numbers: 67.85.�d, 03.75.Ss, 05.30.Fk, 71.10.Fd

Introduction.—At the heart of many condensed-matter
phenomena lies the interplay between strong correlations
and temperature. However, even the minimal model incor-
porating these effects, the Hubbard model, withstands an
exact solution. Ultracold quantum gases in optical lattices
provide a new way to emulate the physics of these model
systems in a highly controlled way [1]: not only can almost
all system parameters be tuned with ultimate precision, but
also the microscopic details underlying the model are fully
known. In this way the phase diagram of the Bose-Hubbard
model, which includes the bosonic Mott insulator, has been
mapped out [2]. For fermionic lattice systems, which
directly correspond to electrons in crystalline solid-state
lattices, the formation of an incompressible Mott insulating
state has been observed as well [3,4]. Using Feshbach
resonances, it has also been possible to implement the
attractive Hubbard model [5,6], which sustains an s-wave
superfluid state at low temperature and entropy.

One ultimate goal of this research direction is to
establish a detailed description of the Fermi-Hubbard
model applicable to the strongly correlated regime of
high-Tc superconductors [7,8]. Unfortunately, current
experimental entropies are too high to observe phenomena
such as magnetic ordering [9]. While average entropies per
particle down to S=kBN � 0:5 have been demonstrated for
fermions in pure dipole traps [10], in optical lattices only
values down to S=kBN � 1–2 could be realized so far
[6,11], which is well above the maximum entropy where
antiferromagnetic ordering can be observed [12,13].

However, even at the current experimental entropies,
interesting physics emerges from the interplay between
strong correlations and thermodynamics, as has been
studied by several authors for repulsive interactions
[13–16] in the context of Mott insulators. Recently,
Hackermüller et al. experimentally [6] investigated this

interplay between strong correlations and entropy, focus-
ing on the attractive regime. By loading a two-component
Fermi gas into a three-dimensional (3D) optical lattice in
the presence of a harmonic trapping potential, the size of
the fermionic cloud was measured for different interaction
strengths. One would naturally expect that this leads to an
increasing cloud size for repulsive interactions while an
increasing attractive interaction should lead to a decreasing
cloud size. However, a counterintuitive behavior of the
cloud size was observed: the cloud shrinks upon entering
the attractive regime, but reaches a minimum at relatively
small attractive interaction. For larger attraction the cloud
expands again.
This anomalous trend was attributed to the adiabatic

heating effect: for sufficiently strong attractive interaction,
singly occupied sites have a much higher energy than
doubly occupied ones and become energetically irrelevant.
This strongly reduces the available Hilbert space and, at
constant temperature, leads to a lower entropy. In order
to keep the entropy constant, the temperature increases,
leading to a higher entropy in the motional degree of
freedom and therefore to the anomalous expansion.
In this Letter we theoretically investigate this experi-

ment by means of dynamical mean-field theory (DMFT)
simulations of the Hubbard model in the presence of a
harmonic trap. Even though our calculations fully include
the adiabatic heating effect and also find an anomalous
expansion of the cloud size for large attractive interactions,
we only find an agreement between our equilibrium calcu-
lation and the experimental data of Ref. [6] for weak
interactions, whereas we find a significant discrepancy
for strong interactions. We attribute this to a strong slowing
down of particle transport already for moderately large
interactions, leading to a dynamical arrest in a state whose
size is significantly larger than the equilibrium radius of the
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particle cloud. The long-lived arrested states, which we
find for lattice fermions, bear a strong resemblance to those
of attractive colloidal glasses [17].

Model and method.—We consider a two-component
mixture of fermionic atoms, loaded into the lowest band
of a 3D cubic optical lattice in the presence of an external
harmonic potential. For sufficiently deep optical lattices,
this system is well described by the inhomogeneous Fermi-
Hubbard Hamiltonian

H ¼ �J
X

hi;ji;�
ðĉyi�ĉj� þ H:c:Þ þU

X

i

n̂i"n̂i#

�X

i�

ð�� V0r
2
i Þn̂i�:

Here, ĉyi� and ĉi� are the fermionic creation and annihila-

tion operators and n̂i� ¼ ĉyi�ĉi� is the number operator,
where � 2 f"; #g labels the two hyperfine states. The on-
site interaction is denoted by U, the single-atom hopping
amplitude between nearest neighbors hi; ji is J and� is the
chemical potential controlling the particle number. We
consider a pancake shaped harmonic trapping potential of
strength V0 with aspect ratio � and define r2i ¼ x2i þ y2i þ
�2z2i as the squared distance of site i from the trap center.

We apply DMFT to obtain the equilibrium properties of
this Hamiltonian. Employing the assumption of a local
self-energy, DMFT treats local quantum correlations in a
fully nonperturbative manner [18]. The Fermi-Hubbard
model is mapped to an effective single impurity Anderson
model. Here we use exact diagonalization to obtain the
self-consistent solution of the impurity model with 3
auxiliary bath degrees of freedom in the effective single
impurity Anderson model, to obtain the self-consistent
solution. We determine the local Green’s function for the
lowest 200 Matsubara frequencies. To incorporate the har-
monic potential, we use the local density approximation
(LDA), which is known to reliably predict the density
distribution for fermionic systems when the trap is suffi-
ciently shallow [19,20]. In this approximation, every site is
modeled as part of a homogeneous system with local
chemical potential �ðriÞ ¼ �0 � V0r

2
i . We obtain the

density profile of the fermions, from which the cloud
radius is extracted. To make a direct comparison with the
experiment, we employ the following definition for the
cloud radius [6]

R2 ¼ 1

N�

X

i

r2i hn̂i;�i; (1)

where N� is the total particle number per spin state. We
consider a balanced mixture with total particle number
N ¼ 2N�, such that R in Eq. (1) is independent of �. To
compute the entropy per lattice site, we use the Maxwell
relation sð�Þ ¼ R�

�1 d�0@nð�0Þ=@T and then obtain the
total entropy by S ¼ P

is½�ðriÞ�. The harmonic potential is

characterized by the characteristic energy Ec ¼ V0r
2
c ¼

3
5V0ð3�N=8�Þ2=3, which is the mean potential energy per

particle of a maximally packed state at the bottom of the
trap with total particle number N; rc is the corresponding
radius, which is used as the length scale to express the
cloud size R=rc. We note that in LDA the rescaled radius
R=rc is fully determined by the average entropy per parti-
cle S=kBN and the ratios of tunneling to trap strength J=Ec

and interaction to tunneling U=J, implying that all results
shown in Figs. 1–5 are independent of the details of the
trap. The experiment has been performed for N� � 1:5�
105 particles at a temperature T=TF ¼ 0:12� 0:03 before
loading of the lattice (where TF is the Fermi temperature)
and an entropy per particle of S=kBN ¼ 1:15� 0:25. In the
experiment, both S=kBN and J=Ec were known only with a
considerable uncertainty [6]. Since the effect of the experi-
mental uncertainty in J=Ec on the cloud size is larger, we
chose to perform all calculations for a fixed entropy per
particle of S=kBN ¼ 1:15 and determined the value of
J=Ec by comparing the experimental radius for U=J ¼ 0
with exact diagonalization (ED) results. In the noninteract-
ing case nonequilibrium effects are minimal, so that the
experimental data at U=J ¼ 0 can be reliably fitted to
theoretical calculations [21]. The resulting J=Ec agree
with the experimental data within error bars for low con-
finements, and only deviate at high confinements, where
also some heating was observed in the experiment
(cf. Supplemental Material to Ref. [6]). In addition, we
find satisfying quantitative agreement with our DMFT

FIG. 1 (color online). Comparison of the experimental cloud
radius with DMFT results [23]. While we find good agreement
for small interactions, the experimentally observed radii are
significantly higher than expected from theory for stronger
interactions. We attribute this to the dynamical arrest discussed
in the main text. Also shown are the results of a 6th order high
temperature series expansion (HTSE) of the Hubbard model
(dashed lines) [24,25]. Since temperature decreases with increas-
ing J=Ec and U=J [cf. Fig. 2 (left)] the HTSE is only applicable
to sufficiently small or negative U=J and small J=Ec.
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calculations for the fixed J=Ec (without additional fitting
parameters) in the regime of weak interactions.

Results.—In Fig. 1 we show our DMFT results for the
rescaled cloud radius R=rc versus the on-site interaction
U=J for various values of the characteristic trap energy
J=Ec, which are compared directly to the experimental
data points [6]. Also, a comparison with a 6th order high
temperature series expansion is included in this figure,
which agrees very well with the DMFT calculations.
While we included the possibility of s-wave superfluid
order in our calculations, we found that the experimental
entropy is too high for superfluidity to be present.

For weak interactions jU=Jj & 2, we observe very good
quantitative agreement with the experimental data points,
evidencing that the DMFT solution of the single-band
Hubbard model incorporates the relevant physics in this
parameter regime. For stronger attractive interactions we
also find the anomalous expansion of the cloud size in the
DMFT calculations. By plotting the temperature at con-
stant entropy, we can directly verify that this is indeed due
to adiabatic heating originating from a reduced available
phase space. This is displayed in Fig. 2 (left) and indeed
shows a strong rise for large attraction. When the entropy is
decreased, the anomalous expansion is expected to disap-
pear, since essentially ground state properties are probed in
this case. This is clearly visible in Fig. 2 (right), where the
radius for different entropies is shown. For repulsive
interactions an adiabatic cooling effect is observed, similar
to what was found in Ref. [12] (see Supplemental Material
of Ref. [4]). Although for strong repulsion a similar reduc-
tion in phase space occurs, because doubly occupied sites
are energetically unfavored, this is more than compensated
by additional (spin) configurational entropy for the fermi-
ons at the wings of the clouds.

Although our simulation thus fully includes the adia-
batic heating effect, our results show that the anomalous
expansion seen in the experiment cannot be explained by

adiabatic heating alone: At stronger interactions we find
significant deviations from the experimentally observed
cloud sizes, which are much larger than theoretically
expected. By measuring the temperature after unloading
the atoms again from the lattice it was excluded that the
discrepancy is due to heating [6]. We attribute this differ-
ence to strong nonequilibrium effects in the loading: after
evaporative cooling, the cloud size in the pure harmonic
trap is significantly larger than the final equilibrium size in
the lattice. During the ramp-up of the lattice, the effective
mass of the atoms increases due to a reduction of kinetic
energy in the lowest band of the lattice. This leads to a
shrinking of the cloud (see Fig. 3) under adiabatic con-
ditions. The scattering length, which is adjusted by using a
Feshbach resonance before the loading of the lattice, gives
rise to an interaction strength U=J which rapidly grows
with the lattice depth. As recently demonstrated [21], even
moderate interactions slow down the atoms severely,
thereby prohibiting the large-scale particle transport nec-
essary for following the adiabatic path. This can be seen,
e.g., by comparing the initial radius before the ramp-up
with the radius in the lattice [Fig. 4 (left)]: In the experi-
ment, the radius shrinks always by the same percentage
independently of the trap strength, which would not be the
case if the cloud stays in equilibrium. In contrast to the
situation in Ref. [21], where a symmetric reduction of
particle transport for attractive and repulsive interactions
was observed, we observe much weaker non-adiabatic
effects for the repulsive regime in this case. This is proba-
bly due to the fact that the difference between the radius
before the ramp-up and the equilibrium radius at the final
lattice depth is much smaller in the repulsive than in the
attractive regime. Once this effect is scaled out [see Fig. 4
(right)] we see a significant deviation on both sides.
Moreover, repulsive interactions decrease the number of
double occupancies while attractive interactions increase
it, thereby giving rise to different dynamics. Interestingly,
we see that the deviation in Fig. 4 (right) becomes

attractive

repulsive

dynamical arrest

dynamical arrest

FIG. 3 (color online). Interacting fermions during the lattice
ramp up: In the experiment, the harmonic confinement Ec and
the scattering length are set in the dipole trap and remain fixed
during the lattice ramp. Left: The tunneling and interaction
during the ramp. Right: Equilibrium cloud size for attractive
and repulsive interactions during the ramp. The dashed line
denotes the nonadiabatic path of the dynamical arrest.

FIG. 2 (color online). Left: Temperature vs interaction for an
entropy per particle of S=kBN ¼ 1:15 and different external
harmonic confinements. Right: Cloud radius for different entro-
pies S=kBN ¼ 0:4–1:6. The anomalous expansion becomes more
pronounced for higher entropies.
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independent of U=J for sufficiently strong attraction. This
is because the experimental and theoretical curves in
Fig. 1—although offset—have the same slope.

To quantify the proposed scenario, i.e., that the disagree-
ment between the experimental and theoretical cloud size
has to be attributed to a dynamical arrest of the particles
due to the slowing down of particle transport, we substitute
this gradual change in adiabaticity by a stepwise model
where up to a critical lattice depth Vlc the system is in
thermal and chemical equilibrium and experiences fully
adiabatic changes of its state. When the lattice depth
exceeds a critical value we assume the cloud to be
completely static, as illustrated in Fig. 3.

Within this model we only need equilibrium simulations
to determine the critical lattice depth. As seen before,
within LDA the rescaled radius ~R ¼ R=rc depends only

on ~S ¼ S=kBN, ~J ¼ J=Ec and ~U ¼ U=J. This allows us to
determine the lattice depth at which the system freezes by
calculating ~J ¼ ~Jð ~VlÞ and ~U ¼ ~Uð ~Vl; ~aÞ as a function of
the lattice depth ~Vl ¼ Vl=ER using band structure calcu-
lations. Here, ~a ¼ a=a0 (a0: Bohr radius) denotes the
scattering length. We take into account that Ec also
depends on the lattice depth due to the anticonfining
effect of the optical lattice. The critical lattice depth Vlc

is then defined as the value, where the calculated equilib-
rium radius coincides with the experimentally measured
one; i.e.,

~Rexp ¼ ~Rð~S; ~Jð ~VlcÞ; ~Uð ~Vlc; ~aÞÞ; (2)

where ~Rexp is the experimentally measured radius and the

function ~R is calculated with DMFT.
The resulting critical lattice depths Vlc for dynamical

arrest of the cloud are shown in Fig. 5. First, we observe a
strong dependence on the scattering length, which is
indeed fully consistent with the dynamical arrest hypothe-
sis, as the scattering length linearly affects U=J, which

determines the transport properties. We note that for
stronger interactions the critical lattice depth is rather
low, and almost leaves the validity regime of the single-
band Hubbard model. Second, we observe that Vlc is
relatively independent of the external harmonic confine-
ment V0, such that the data points for different J=Ec

collapse almost to a single curve. Indeed, while a tighter
trap increases the density and thereby slows down the
dynamics, it at the same time also decreases the distance
for the required particle transport.
Conclusion.—We calculated the cloud size of an inter-

acting Fermi gas by means of DMFT and obtained very
good quantitative agreement with experimental data for
weak interactions. Despite qualitative agreement, we
observe a significant discrepancy with the experiment for
strong interactions, which we attribute to nonequilibrium
effects caused by an interaction-induced slowing down of
particle transport. The system is therefore dynamically
arrested at a critical lattice depth, which we observe to be
almost independent of the harmonic trap. The observation
of such an arrested state gives very interesting insights into
the nonequilibrium dynamics of strongly interacting many-
particle systems: it shows that the velocity for mass trans-
port and (probably) entropy transport decreases very fast
with increasing interaction, such that strongly interacting
systems are nearly frozen. This message clearly has far-
reaching consequences for future experiments on strongly
interacting Fermi gases in optical lattices, for instance, with
the goal of observing s-wave superfluidity or antiferromag-
netic order. The dynamical arrest makes it difficult to pre-
pare the system in the desired equilibrium states. Avoiding
the dynamical arrest requires broad changes of the experi-
mental procedures used up to now: any loading sequence
into a deep lattice should be tailored such that it minimizes
the required density and entropy redistribution. Concerning

FIG. 5 (color online). Critical lattice depth calculated from the
experimentally measured radius via Eq. (2), as a function of the
scattering length. The dashed line indicates the final maximum
lattice depth at Vl=ER ¼ 7 to which the optical lattice was
ramped up. The values for J=Ec given in the legend are reached
for lattice depth 7ER.

FIG. 4 (color online). Left: Final radius R of the cloud
relative to the initial radius Rini before ramp-up of the lattice.
(symbols: experiment, lines: equilibrium theory, same colors
denote same J=Ec) Right: Relative difference between expected
(�Req ¼ Req � Rini) and observed (�Rexp ¼ Rexp � Rini)

change in cloud size during the lattice loading from the expected
change in cloud size during the ramp.
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particle transport, this could in principle be achieved by
dynamically adjusting the trapping potential during the
lattice loading. However, the formation of the desired
low-entropy phases in addition requires a strong redistrib-
ution of entropy, which will probably be subject to similar
limitations. In the case of the antiferromagnet, another
possibility is the recently proposed use of a superlattice
[22]: There, the atoms would initially be loaded into a
noninteracting band insulator in the long wavelength lat-
tice, thus avoiding the dynamical arrest of interacting
particles. Subsequently, this state can be adiabatically trans-
formed into an antiferromagnet in the short wavelength
lattice without any density or entropy redistributions.
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Bloch. This work was supported by the German Science
Foundation DFG (FOR 801, SFB/TR 49, SFB 668, and
SFB 925) and the Netherlands Organization for Scientific
Research (NWO).
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