1,306 research outputs found

    Cosmic Strings Lens Phenomenology: Model of Poisson Energy Distribution

    Full text link
    We present a novel approach for investigating lens phenomenology of cosmic strings in order to elaborate detection strategies in galaxy deep field images. To account for the complexity of the projected energy distribution of string networks we assume their lens effects to be similar to those of a straight string carrying a {\em random} lineic energy distribution. In such a model we show that, unlike the case of uniform strings, critical phenomena naturally appear. We explore the properties of the critical lines and caustics. In particular, assuming that the energy coherence length along the string is much smaller than the observation scale, we succeeded in computing the total length of critical lines per unit string length and found it to be 4/3E(3/4)4/\sqrt{3} {\bf E}(3/4). The length of the associated caustic lines can also be computed to be 16/(π3)E(3/4)16/(\pi \sqrt{3}) {\bf E}(3/4). The picture we obtain here for the phenomenology of cosmic string detection is clearly at variance with common lore.Comment: 10 pages, 5 figures. Minor correction

    Governance and Power Dynamics in a Small-Scale Hilsa Shad (Tenualosa ilisha) Fishery : A Case Study from Bangladesh

    Get PDF
    This paper considers the hilsa shad (Tenualosa ilisha) fishery of southern Bangladesh as a case study regarding governance and power dynamics at play in a small-scale fishery, and the relevance of these for the sustainable management of coastal fisheries. Qualitative methods, involving in-depth individual interviews (n = 128) and focus group discussions (n = 8) with key stakeholders in the hilsa fishery, were used to capture multiple perspectives on governance from those in different positions in the relative power structures studied, while facilitating insightful discussions and reflections. The analysis here is based on a power cube framework along three power dimensions (levels, spaces, and forms) in Bangladesh's hilsa fishery. The study displays an imbalance in the present hilsa governance structure, with some stakeholders exercising more power than others, sidelining small-scale fishers, and encouraging increasing illegal fishing levels that ultimately harm both the fisheries and those dependent on them. To overcome this, we propose a co-management system that can play a vital role in equalizing power asymmetry among hilsa fishery stakeholders and ensure effective hilsa fishery governance. Our results suggest that recognizing analyzed power dynamics has substantial implications for the planning and implementation of such co-management and the long-term sustainability of the hilsa fishery.Peer reviewe

    Estimating Self-Sustainability in Peer-to-Peer Swarming Systems

    Full text link
    Peer-to-peer swarming is one of the \emph{de facto} solutions for distributed content dissemination in today's Internet. By leveraging resources provided by clients, swarming systems reduce the load on and costs to publishers. However, there is a limit to how much cost savings can be gained from swarming; for example, for unpopular content peers will always depend on the publisher in order to complete their downloads. In this paper, we investigate this dependence. For this purpose, we propose a new metric, namely \emph{swarm self-sustainability}. A swarm is referred to as self-sustaining if all its blocks are collectively held by peers; the self-sustainability of a swarm is the fraction of time in which the swarm is self-sustaining. We pose the following question: how does the self-sustainability of a swarm vary as a function of content popularity, the service capacity of the users, and the size of the file? We present a model to answer the posed question. We then propose efficient solution methods to compute self-sustainability. The accuracy of our estimates is validated against simulation. Finally, we also provide closed-form expressions for the fraction of time that a given number of blocks is collectively held by peers.Comment: 27 pages, 5 figure

    Selective ion sieving through arrays of sub-nanometer nanopores in chemically tunable 2D carbon membranes

    Get PDF
    Two-dimensional (2D) membranes featuring arrays of sub-nanometer pores have applications in purification, solvent separation and water desalination. Compared to channels in bulk membranes, 2D nanopores have lower resistance to transmembrane transport, leading to faster passage of ions. However, the formation of nanopores in 2D membranes requires expensive post-treatment using plasma or ion bombardment. Here, we study bottom-up synthesized porous carbon nanomembranes (CNMs) of biphenyl thiol (BPT) precursors. Sub-nanometer pores arise intrinsically during the BPT-CNM synthesis with a density of 2 ± 1 pore per 100 nm2. We employ BPT-CNM based pore arrays as efficient ion sieving channels, and demonstrate selectivity of the membrane towards ion transport when exposed to a range of concentration gradients of KCl, CsCl and MgCl2. The selectivity of the membrane towards K+ over Cl− ions is found be 16.6 mV at a 10 : 1 concentration ratio, which amounts to ∼30% efficiency relative to the Nernst potential for complete ion rejection. The pore arrays in the BPT-CNM show similar transport and selectivity properties to graphene and carbon nanotubes, whilst the fabrication method via self-assembly offers a facile means to control the chemical and physical properties of the membrane, such as surface charge, chemical nature and pore density. CNMs synthesized from self-assembled monolayers open the way towards the rational design of 2D membranes for selective ion sieving

    Photon-axion conversion in intergalactic magnetic fields and cosmological consequences

    Get PDF
    Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic standard candles such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.Comment: (14 pages, 9 eps figures) Contribution to appear in a volume of Lecture Notes in Physics (Springer-Verlag) on Axion

    Dark soliton states of Bose-Einstein condensates in anisotropic traps

    Full text link
    Dark soliton states of Bose-Einstein condensates in harmonic traps are studied both analytically and computationally by the direct solution of the Gross-Pitaevskii equation in three dimensions. The ground and self-consistent excited states are found numerically by relaxation in imaginary time. The energy of a stationary soliton in a harmonic trap is shown to be independent of density and geometry for large numbers of atoms. Large amplitude field modulation at a frequency resonant with the energy of a dark soliton is found to give rise to a state with multiple vortices. The Bogoliubov excitation spectrum of the soliton state contains complex frequencies, which disappear for sufficiently small numbers of atoms or large transverse confinement. The relationship between these complex modes and the snake instability is investigated numerically by propagation in real time.Comment: 11 pages, 8 embedded figures (two in color

    Homegarden commercialization: extent, household characteristics, and effect on food security and food sovereignty in Rural Indonesia

    Get PDF
    Homegardens have long been recognized for contributing to household food security, nutritional status, and ecological sustainability in especially poor, rural areas in low-income countries. However, as markets and policies drive the commercialization of food and farming systems, and of rural livelihoods in general, it becomes increasingly difficult for small-holder farmers to maintain homegarden plots. Rather than autonomous spaces to grow food for self-consumption, farmers are transforming the land around their dwellings into an income-generating space by planting commercial crops for sale in urban and processing markets. The objective of this study was to examine homegarden commercialization in the Upper Citarum Watershed of West Java, Indonesia, and its effects on food security and food sovereignty. We employed a mixed-method approach to survey 81 village households involved in agricultural production. For quantitative analysis, we calculated a “homegarden commercialization index,” and developed indicator frameworks to examine relationships between commercialization, household food security, and food-related decision-making. Accompanied by insights from qualitative interviews, our results show that homegardens are highly commercialized, which contributes to the spread of monocultural production in the region. We argue that homegardens should be included and supported in food, agricultural, health, environmental, and rural development policy, in Indonesia and generally

    The Galactic Halo in Mixed Dark Matter Cosmologies

    Full text link
    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDMm_{\rm WDM}) and the cosmic dark matter mass fraction in the WDM component (fˉW\bar{f}_{\rm W}). The scaling ansatz introduced in combined analysis of LHC and astroparticle searches postulates that the relative contribution of each dark matter component is the same locally as on average in the Universe (e.g. fW,=fˉWf_{\rm W,\odot} = \bar{f}_{\rm W}). Here we find however, that the normalised local WDM fraction (fW,f_{\rm W,\odot} / fˉW\bar{f}_{\rm W}) depends strongly on mWDMm_{\rm WDM} for mWDM<m_{\rm WDM} < 1 keV. Using the scaling ansatz can therefore introduce significant errors into the interpretation of dark matter searches. To correct this issue a simple formula that fits the local dark matter densities of each component is provided.Comment: 19 pages, 10 figures, accepted for publication in JCA

    Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks

    Full text link
    Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere's three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere's vertical stratification and general circulation. Specifically, the new measure "cross-betweenness" identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective
    corecore