1,119 research outputs found

    Timelike and null focusing singularities in spherical symmetry: a solution to the cosmological horizon problem and a challenge to the cosmic censorship hypothesis

    Get PDF
    Extending the study of spherically symmetric metrics satisfying the dominant energy condition and exhibiting singularities of power-law type initiated in SI93, we identify two classes of peculiar interest: focusing timelike singularity solutions with the stress-energy tensor of a radiative perfect fluid (equation of state: p=13ρp={1\over 3} \rho) and a set of null singularity classes verifying identical properties. We consider two important applications of these results: to cosmology, as regards the possibility of solving the horizon problem with no need to resort to any inflationary scenario, and to the Strong Cosmic Censorship Hypothesis to which we propose a class of physically consistent counter-examples.Comment: 26 pages, 2 figures, LaTeX file. Submitted to Phys. Rev.

    Characterization and application of two RANK-specific antibodies with different biological activities.

    Get PDF
    Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools

    Fuchsian convex bodies: basics of Brunn--Minkowski theory

    Full text link
    The hyperbolic space \H^d can be defined as a pseudo-sphere in the (d+1)(d+1) Minkowski space-time. In this paper, a Fuchsian group Γ\Gamma is a group of linear isometries of the Minkowski space such that \H^d/\Gamma is a compact manifold. We introduce Fuchsian convex bodies, which are closed convex sets in Minkowski space, globally invariant for the action of a Fuchsian group. A volume can be associated to each Fuchsian convex body, and, if the group is fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be studied in the same manner as convex bodies of Euclidean space in the classical Brunn--Minkowski theory. For example, support functions can be defined, as functions on a compact hyperbolic manifold instead of the sphere. The main result is the convexity of the associated volume (it is log concave in the classical setting). This implies analogs of Alexandrov--Fenchel and Brunn--Minkowski inequalities. Here the inequalities are reversed

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels

    The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals

    Get PDF
    We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.Comment: Submitted to Astronomical Journa

    Strong Gravitational Lensing in a Charged Squashed Kaluza- Klein Black hole

    Full text link
    In this paper we investigate the strong gravitational lensing in a charged squashed Kaluza-Klein black hole. We suppose that the supermassive black hole in the galaxy center can be considered by a charged squashed Kaluza-Klein black hole and then we study the strong gravitational lensing theory and estimate the numerical values for parameters and observables of it. We explore the effects of the scale of extra dimension ρ0\rho_0 and the charge of black hole ρq\rho_q on these parameters and observables.Comment: 17 pages, 10 figure

    Anomalous magnetic exchange in a dimerized quantum magnet composed of unlike spin species

    Get PDF
    We present here a study of the magnetic properties of the antiferromagnetic dimer material CuVOF 4 ( H 2 O ) 6 ⋅ H 2 O , in which the dimer unit is composed of two different S = 1 / 2 species, Cu(II) and V(IV). An applied magnetic field of μ 0 H c 1 = 13.1 ( 1 ) T is found to close the singlet-triplet energy gap, the magnitude of which is governed by the antiferromagnetic intradimer J 0 ≈ 21 K, and interdimer J ′ ≈ 1 K, exchange energies, determined from magnetometry and electron-spin resonance measurements. The results of density functional theory (DFT) calculations are consistent with the experimental results. The DFT calculations predict antiferromagnetic coupling along all nearest-neighbor bonds, with the magnetic ground state comprising spins of different species aligning antiparallel to one another, while spins of the same species are aligned parallel. The magnetism in this system cannot be accurately described by the overlap between localized V orbitals and magnetic Cu orbitals lying in the Jahn-Teller (JT) plane, with a tight-binding model based on such a set of orbitals incorrectly predicting that interdimer exchange should be dominant. DFT calculations indicate significant spin density on the bridging oxide, suggesting instead an unusual mechanism in which intradimer exchange is mediated through the O atom on the Cu(II) JT axis

    The GOBLET training portal: A global repository of bioinformatics training materials, courses and trainers

    Get PDF
    Summary: Rapid technological advances have led to an explosion of biomedical data in recent years. The pace of change has inspired new collaborative approaches for sharing materials and resources to help train life scientists both in the use of cutting-edge bioinformatics tools and databases and in how to analyse and interpret large datasets. A prototype platform for sharing such training resources was recently created by the Bioinformatics Training Network (BTN). Building on this work, we have created a centralized portal for sharing training materials and courses, including a catalogue of trainers and course organizers, and an announcement service for training events. For course organizers, the portal provides opportunities to promote their training events; for trainers, the portal offers an environment for sharing materials, for gaining visibility for their work and promoting their skills; for trainees, it offers a convenient one-stop shop for finding suitable training resources and identifying relevant training events and activities locally and worldwide

    Observing many body effects on lepton pair production from low mass enhancement and flow at RHIC and LHC energies

    Full text link
    The ρ\rho spectral function at finite temperature calculated using the real-time formalism of thermal field theory is used to evaluate the low mass dilepton spectra. The analytic structure of the ρ\rho propagator is studied and contributions to the dilepton yield in the region below the bare ρ\rho peak from the different cuts in the spectral function are discussed. The space-time integrated yield shows significant enhancement in the region below the bare ρ\rho peak in the invariant mass spectra. It is argued that the variation of the inverse slope of the transverse mass (MTM_T) distribution can be used as an efficient tool to predict the presence of two different phases of the matter during the evolution of the system. Sensitivity of the effective temperature obtained from the slopes of the MTM_T spectra to the medium effects are studied
    corecore