3,784 research outputs found

    Proton Drip-Line Calculations and the Rp-process

    Get PDF
    One-proton and two-proton separation energies are calculated for proton-rich nuclei in the region A=41−75 A=41-75 . The method is based on Skyrme Hartree-Fock calculations of Coulomb displacement energies of mirror nuclei in combination with the experimental masses of the neutron-rich nuclei. The implications for the proton drip line and the astrophysical rp-process are discussed. This is done within the framework of a detailed analysis of the sensitivity of rp process calculations in type I X-ray burst models on nuclear masses. We find that the remaining mass uncertainties, in particular for some nuclei with N=ZN=Z, still lead to large uncertainties in calculations of X-ray burst light curves. Further experimental or theoretical improvements of nuclear mass data are necessary before observed X-ray burst light curves can be used to obtain quantitative constraints on ignition conditions and neutron star properties. We identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table

    Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Full text link
    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,γ\gamma), (α\alpha,γ\gamma), and (α\alpha,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape X-ray burst observables and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.Comment: 24 pages, 13 figures, 4 tables, submitte

    Models for Type I X-Ray Bursts with Improved Nuclear Physics

    Get PDF
    Multi-zone models of Type I X-ray bursts are presented that use an adaptive nuclear reaction network of unprecedented size, up to 1300 isotopes. Sequences of up to 15 bursts are followed for two choices of accretion rate and metallicity. At 0.1 Eddington (and 0.02 Eddington for low metallicity), combined hydrogen-helium flashes occur. The rise times, shapes, and tails of these light curves are sensitive to the efficiency of nuclear burning at various waiting points along the rp-process path and these sensitivities are explored. The bursts show "compositional inertia", in that their properties depend on the fact that accretion occurs onto the ashes of previous bursts which contain left-over hydrogen, helium and CNO nuclei. This acts to reduce the sensitivity of burst properties to metallicity. For the accretion rates studied, only the first anomalous burst in one model produces nuclei as heavy as A=100, other bursts make chiefly nuclei with A~64. The amount of carbon remaining after hydrogen-helium bursts is typically <1% by mass, and decreases further as the ashes are periodically heated by subsequent bursts. At the lower accretion rate of 0.02 Eddington and solar metallicity, the bursts ignite in a hydrogen-free helium layer. At the base of this layer, up to 90% of the helium has already burned to carbon prior to the unstable ignition. These helium-ignited bursts have briefer, brighter light curves with shorter tails, very rapid rise times (<0.1 s), and ashes lighter than the iron group.Comment: Submitted to the Astrophysical Journal (42 pages; 27 figures

    Exploring Outliers in Crowdsourced Ranking for QoE

    Full text link
    Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin note: text overlap with arXiv:1407.763

    Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    Get PDF
    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio

    Superbursts at near-Eddington mass accretion rates

    Full text link
    Models for superbursts from neutron stars involving carbon shell flashes predict that the mass accretion rate should be anywhere in excess of one tenth of the Eddington limit. Yet, superbursts have so far only been detected in systems for which the accretion rate is limited between 0.1 and 0.25 times that limit. The question arises whether this is a selection effect or an intrinsic property. Therefore, we have undertaken a systematic study of data from the BeppoSAX Wide Field Cameras on the luminous source GX 17+2, comprising 10 Msec of effective observing time on superbursts. GX 17+2 contains a neutron star with regular Type-I X-ray bursts and accretes matter within a few tens of percents of the Eddington limit. We find four hours-long flares which reasonably match superburst characteristics. Two show a sudden rise (i.e., faster than 10 s), and two show a smooth decay combined with spectral softening. The implied superburst recurrence time, carbon ignition column and quenching time for ordinary bursts are close to the predicted values. However, the flare decay time, fluence and the implied energy production of (2-4) x 10^17 erg/g are larger than expected from current theory.Comment: Accepted for publication in Astronomy & Astrophysic

    Entwicklung eines regionalen Ausbildungsmodells „Ökolandbau und Vermarktung“ an der Fachhochschule Eberswalde im Rahmen des Bundesförderprogramms Regionen Aktiv

    Get PDF
    In September 2004 a new B. Sc. study course for Organic Farming and Marketing started at the University of Applied Sciences Eberswalde. Supported by the Federal Ministry of Consumer Protection, Food and Agriculture program “Regionen Aktiv” an innovative education model was established. Focussing on rural development farmers, processors and trading partners were involved in the development of topics for the study programme
    • 

    corecore