X-ray bursts are thermonuclear flashes on the surface of accreting neutron
stars and reliable burst models are needed to interpret observations in terms
of properties of the neutron star and the binary system. We investigate the
dependence of X-ray burst models on uncertainties in (p,γ),
(α,γ), and (α,p) nuclear reaction rates using fully
self-consistent burst models that account for the feedbacks between changes in
nuclear energy generation and changes in astrophysical conditions. A two-step
approach first identified sensitive nuclear reaction rates in a single-zone
model with ignition conditions chosen to match calculations with a
state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution
code. All relevant reaction rates on neutron deficient isotopes up to mass 106
were individually varied by a factor of 100 up and down. Calculations of the 84
highest impact reaction rate changes were then repeated in the 1D multi-zone
model. We find a number of uncertain reaction rates that affect predictions of
light curves and burst ashes significantly. The results provide insights into
the nuclear processes that shape X-ray burst observables and guidance for
future nuclear physics work to reduce nuclear uncertainties in X-ray burst
models.Comment: 24 pages, 13 figures, 4 tables, submitte