74 research outputs found

    Antibiotic resistance and molecular characteristics of methicillin-resistant Staphylococcus epidermidis recovered from hospital personnel in China

    Get PDF
    Objectives Staphylococcus epidermidis is a major nosocomial pathogen predominantly associated with indwelling medical device infections. Studies reporting on S. epidermidis recovered from hospital personnel in China are scarce. The aim of this study was to evaluate the carriage and antibiotic resistance of S. epidermidis among the hospital personnel in Tianjin, China and provide insights into their genetic diversity. Methods 107 S. epidermidis isolates were recovered from 68 hospital personnel in two public hospitals in Tianjin between March 2018 and May 2018. SCCmec types were determined by the combination of mec and ccr complexes. Multi-locus sequence typing was used to determine the sequence types (ST) of S. epidermidis isolates. Results 62 (76.5%) isolates were determined to be methicillin-resistant S. epidermidis (MRSE). 35 (51%) out of 68 hospital personnel carried S. epidermidis, of which 32 (91%) were carriers of MRSE. All 62 MRSE isolates had high levels of resistance to penicillin (90%) and cefoxitin (100%). 37 (60%) isolates carried SCCmec type IV, followed by 15 (24%) carrying SCCmec V, and 4 (6%) SCCmec II. Novel sequence types were assigned to four S. epidermidis isolates (ST832, ST833, ST834 and ST835). Conclusions In this study, the majority of MRSE belonged to cluster II domain of CC2. The ST59-IV was a dominant clone among isolates recovered from hospital personnel. Determination of new MLST types confirmed the genetic diversity of these isolates. These observations highlight the need to review the infection control strategies to reduce the carriage of MRSE among hospital personnel

    Detection of novel chromosome-SCCmec variants in Methicillin Resistant Staphylococcus aureus and their inclusion in PCR based screening

    Get PDF
    Findings. To facilitate automation, a novel DNA extraction method for MRSA was adopted. The MRSA specific chromosome-SCCmec PCR was adapted, additional primers were added, and the performance was validated. From various laboratories in The Netherlands we received a total of 86 MRSA clinical isolates, that were negative in commercially available tests. We identified 14 MRSA strains with new variant chromosome-SCCmec junctions by sequence analysis. These MRSA strains appeared to carry SCCmec sequences with a high degree of homology to SCC regions of S. epidermidis and S. haemolyticus. All were included for detection in chromosome-SCCmec based PCR. Background: Efficient management of Methicillin Resistant Staphylococcus aureus (MRSA) in the hospital is needed to prevent dissemination. It is important that MRSA can be rapidly identified, and effective infection control measures can be initiated. Equally important is a rapid MRSA negative report, especially for patients in isolation. For negative screening we implemented fully automated high through-put molecular screening for MRSA. Conclusions: Fourteen variant chromosome-SCCmec junctions in MRSA, that are not detected in commercially available MRSA detection kits were added to our PCR to detect all currently known variant SCC-mec types of MRSA

    The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK

    Get PDF
    Background Coagulase negative staphylococci (CoNS) are important reservoirs of antibiotic resistance genes and associated mobile genetic elements and are believed to contribute to the emergence of successful methicillin resistant Staphylococcus aureus (MRSA) clones. Although, these bacteria have been linked to various ecological niches, little is known about the dissemination and genetic diversity of antibiotic resistant CoNS in general public settings. Methods Four hundred seventy-nine samples were collected from different non-healthcare/general public settings in various locations (n = 355) and from the hands of volunteers (n = 124) in London UK between April 2013 and Nov 2014. Results Six hundred forty-three staphylococcal isolates belonging to 19 staphylococcal species were identified. Five hundred seventy-two (94%) isolates were resistant to at least one antibiotic, and only 34 isolates were fully susceptible. Sixty-eight (11%) mecA positive staphylococcal isolates were determined in this study. SCCmec types were fully determined for forty-six isolates. Thirteen staphylococci (19%) carried SCCmec V, followed by 8 isolates carrying SCCmec type I (2%), 5 SCCmec type IV (7%), 4 SCCmec type II (6%), 1 SCCmec type III (2%), 1 SCCmec type VI (2%), and 1 SCCmec type VIII (2%). In addition, three isolates harboured a new SCCmec type 1A, which carried combination of class A mec complex and ccr type 1. MLST typing revealed that all S. epidermidis strains possess new MLST types and were assigned the following new sequence types: ST599, ST600, ST600, ST600, ST601, ST602, ST602, ST603, ST604, ST605, ST606, ST607 and ST608. Conclusions The prevalence of antibiotic resistant staphylococci in general public settings demonstrates that antibiotics in the natural environments contribute to the selection of antibiotic resistant microorganisms. The finding of various SCCmec types in non-healthcare associated environments indicates the complexity of SCCmec. We also report on new MLST types that were assigned for all S. epidermidis isolates, which demonstrates the genetic variability of these isolates

    A Clonal Complex 12 Methicillin-Resistant Staphylococcus aureus Strain, West Australian MRSA-59, Harbors a Novel Pseudo-SCCmec Element

    Get PDF
    Copyright © 2015, American Society for Microbiology. All Rights Reserved. A West Australian methicillin-resistant Staphylococcus aureus strain (WA MRSA-59) was characterized by microarray and sequencing. Its pseudo-staphylococcal cassette chromosome mec (SCCmec) element comprised dcs, Q9XB68-dcs, mvaS-SCC, Q5HJW6, dru, ugpQ, ydeM, mecA-mecR-mecI, txbi mecI, tnp IS431, copA2-mco (copper resistance), ydhK, arsC-arsB-arsR (arsenic resistance), open reading frame PT43, and per-2. Recombinase genes, xylR (mecR2), and PSM-mec (phenol-soluble modulin) were absent. We suggest that mec complex A should be split into two subtypes. One harbors PSM-mec and xylR (mecR2). It is found in SCCmec types II, III, and VIII. The second subtype, described herein, is present in WA MRSA-59 and some coagulasenegative staphylococci
    corecore