5 research outputs found

    The Italian network on LCA

    No full text

    Efficient Use of Water in the Textile Finishing Industry

    No full text
    Identification and exploitation of non-conventional water sources is a priority for many industrial sectors, especially for the textile finishing industry. Therefore a multicriteria integrated and coherent methodology to support the implementation of sustainable water reuse is essential. The methodology conceived within the EU project TOWEF0 (TOWards EFfluent zero) is presented in this paper, together with the tools to carry out all the steps required by its application. A process data collection for technical/economical evaluation in textile companies was performed and integrated with a characterisation of the process effluents in terms of treatability and reusability. Feasibility evaluations of effluents treatment for reuse were performed and reuse tests in textile processes were carried out. These information allowed for the design of optimised water reuse schemes by Water Pinch application, whereas the Life Cycle Assessment (LCA) permitted the evaluation and comparison of water reuse scenarios. Physical-chemical and eco-toxicological monitoring campaigns of textile discharges and receiving water bodies were conducted as well. All these specific results, valuable and applicable independently, when integrated into the TOWEF0 methodology, generate viable solutions in accordance with the fundamentals of the IPPC DirectiveJRC.H.5-Rural, water and ecosystem resource

    Blueprint for a self-sustained European Centre for service provision in safe and sustainable innovation for nanotechnology

    No full text
    International audienceThe coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe innovation in nanotechnologies. The proposed entity, referred to as “the Centre”, will establish a ‘one-stop shop’ for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability
    corecore