4,760 research outputs found

    Analysis and three-dimensional modeling of vanadium flow batteries

    Get PDF
    This study presents 1.) a multi-dimensional model of vanadium Redox Flow Batteries (RFB); 2.) rigorous explanation of porelevel transport resistance, dilute solution assumption, and pumping power; and 3.) analysis of time constants of heat and mass transfer and dimensionless parameter. The model, describing the dynamic system of a RFB, consists of a set of partial differential equations of mass, momentum, species, charges, and energy conservation, in conjunctionwith the electrode's electrochemical reaction kinetics. The governing equations are successfully implemented into three-dimensional numerical simulation of charging, idling, and discharging operations. The model, validated against experimental data, predicts fluid flow, concentration increase/decrease, temperature contours and local reaction rate. The prediction indicates a large variation in local reaction rate across electrodes and the time constants for reactant variation and temperature evolution, which are consistent with theoretical analysis. © 2014 The Electrochemical Society. All rights reserved

    Analysis and multi-dimensional modeling of lithium-air batteries

    Get PDF
    This study contributes to: 1) a multi-dimensional model framework of lithium-air (Li-air) battery, 2) incorporation of mechanisms of insoluble precipitates' impacts, and 3) analysis and discussion on oxygen supply channel for Li-air battery. The model consists of a set of partial differential equations of species and charge conservation, in conjunction with the electrochemical reaction kinetics, and takes into account the two major mechanisms of voltage loss caused by insoluble discharge products: namely, electrode passivation and increased oxygen transport resistance. Two-dimensional (2-D) simulation indicates that the pore space in the cathode electrode is not fully utilized for Li compounds storage, particularly under high discharging current. For selected battery designs, considerable variation of quantities is observed only in the thickness direction. Through analysis, we evaluate the oxygen concentration drop along an oxygen supply channel and relate it to the Damköhler (Da) number, and further explore potential cases that yield oxygen starvation

    Two-phase flow dynamics in a micro hydrophilic channel: A theoretical and experimental study

    Get PDF
    In this paper, two-phase flow dynamics in a micro hydrophilic channel are experimentally and theoretically investigated. Flow patterns of annulus, wavy, and slug are observed in the range of operating condition. A set of empirical models based on the Lockhart-Martinelli parameter and a two-fluid model using several correlations of the relative permeability are adopted; and their predictions are compared with experimental data. It shows that for low liquid flow rates most model predictions show acceptable agreement with experimental data, while in the regime of high liquid flow rate only a few of them exhibit a good match. Correlation optimization is conducted for individual flow pattern. Through theoretical analysis of flows in a circular and 2-D channel, respectively, we obtain correlations close to the experimental observation. Real-time pressure measurement shows that different flow patterns yield different pressure evolutions. © 2013 Elsevier Ltd. All rights reserved

    Analysis of Air Cathode Perfomance for Lithium-Air Batteries

    Get PDF
    Lithium-air (Li-air) batteries have a theoretical specific energy comparable to gasolines. The air cathode plays a critical role in battery operation, where oxygen reacts with Li ions and electrons; and discharge products are stored in the pore structure. In major non-aqueous electrolytes, discharge products are insoluble and extremely low in electric conductivity, causing electrode passiviation and raising transport polarization. As discharging proceeds, insoluble materials are deposited at the reaction site and accumulate, increasing voltage loss and eventually shutting down operation. In this work, we present analysis of air cathode performance, taking into account both electrode passivation and transport resistance raised by insoluble products. Both effects are theoretically evaluated and compared. Validation is carried out against experimental data under low currents. The effects of electrode pore structure, such as porosity and tortuosity, on both the influence of insoluble precipitates and discharge capability are investigated. © 2013, The Electrochemical Society, Inc. All rights reserved

    Crystallization and preliminary crystallographic studies of an antimicrobial protein from Pharbitis nil

    Get PDF
    An antimicrobial protein from seeds of Pharbitis nil (Pn-AMP) which shows an antifungal activity towards several agriculturally important plant pathogens has been crystallized in the presence of equimolar N-acetylglucosamine with sodium citrate as precipitant. The crystal belongs to the hexagonal space group P6(1)22 (or P6(5)22), with unit-cell parameters a = b = 29.33 (5), c = 133.44 (12) Angstrom. Native data were collected using a crystal at 100 K to a resolution of 1.78 Angstrom.open2

    Spin Discrimination in Three-Body Decays

    Get PDF
    The identification of the correct model for physics beyond the Standard Model requires the determination of the spin of new particles. We investigate to which extent the spin of a new particle XX can be identified in scenarios where it decays dominantly in three-body decays XffˉYX\to f\bar{f} Y. Here we assume that YY is a candidate for dark matter and escapes direct detection at a high energy collider such as the LHC. We show that in the case that all intermediate particles are heavy, one can get information on the spins of XX and YY at the LHC by exploiting the invariant mass distribution of the two standard model fermions. We develop a model-independent strategy to determine the spins without prior knowledge of the unknown couplings and test it in a series of Monte Carlo studies.Comment: 31+1 pages, 4 figures, 8 tables, JHEP.cls include

    Tailoring ferromagnetic chalcopyrites

    Full text link
    If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that band gaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and band gaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V2 chalcopyrites, three of which are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. Based on our results for structural, electronic, and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism.Comment: 6 pages with 4 figures, plus 3 supplementary figures; to appear in Nature Material

    Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS)

    Get PDF
    .Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted "modified panhandle" structure, the 5' and 3' termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3'- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3' adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5'- and 3'-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties

    Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis

    Get PDF
    Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.1187Ysciescopu

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses
    corecore