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Abstract: The identification of the correct model for physics beyond the Standard

Model requires the determination of the spin of new particles. We investigate to

which extent the spin of a new particleX can be identified in scenarios where it decays

dominantly in three-body decays X → ffY . Here we assume that Y is a candidate

for dark matter and escapes direct detection at a high energy collider such as the

LHC. We show that in the case that all intermediate particles are heavy, one can get

information on the spins of X and Y at the LHC by exploiting the invariant mass

distribution of the two standard model fermions. We develop a model-independent

strategy to determine the spins without prior knowledge of the unknown couplings

and test it in a series of Monte Carlo studies.
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1. Introduction

With the start of the Large Hadron Collider (LHC) the direct exploration of physics

at the TeV scale has begun. The hunt for new physics is one of the major topics

in the experimental program of the LHC. Many of these models predict partners of

the known standard model (SM) particles, which usually have the same quantum

numbers and properties but for the mass and the spin assignment. For example, in
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supersymmetric (SUSY) models the fermions have scalar partners whereas in models

with universal extra dimensions (UED) fermionic partners are predicted. Due to the

astrophysical requirement of explaining the dark matter (DM) relic density of the

universe, these models usually invoke an additional discrete symmetry leading to a

new stable particle which in general escapes detection at future collider experiments.

Examples are R-parity in SUSY models or Kaluza-Klein-parity in UED where e.g. the

lightest neutralino or the lightest Kaluza-Klein (KK) excitation of the vector bosons

is the corresponding DM candidate, respectively. The generic signature at LHC

are in both cases SM-fermions with high transverse momentum and missing energy

stemming from the escaping DM candidate.

An important question is: How can one distinguish between different models? These

models differ in the spins of the predicted new particles and, thus, one has to develop

methods to get information on the spin. First attempts have been made for s-channel

resonances [1, 2, 3, 4] and in case of subsequent two-body decays of the new particles

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] where in many cases model dependent

assumptions had been made. An additional possibility to get information on the

spin is cross section measurements provided one knows the representation of the

particle produced [18], e.g. whether it is a colour triplet or a colour octet. Hardly

any attempt has been made so far in case of three-body decays but for the case

of distinguishing a gluino from the KK excitation of a gluon [19] and the quantum

interference method [20, 21, 22, 23] which, in principle, is also valid for three-body

decays. The quantum interference method requires fully reconstructed events which

can be achieved at the ILC and only in few processes at the LHC. In contrast, our

method in this paper does not require full reconstruction of events. In this paper we

start a series of investigations on how one can extract information on the spins of

new particles in a model independent way if three-body decays are dominating.

We concentrate here on the case of the direct production of a new particle X de-

caying via a three-body decay into two SM-fermions and a new invisible particle Y ,

which escapes detection. We will show that the invariant mass distribution of the

two detectable fermions contains sufficient information to extract the spins of the

unknown particles in such a decay.

In this paper, we consider cases where the intermediate particles are very heavy

compared to the decaying one. Examples of such cases are e.g. split SUSY with very

heavy scalars [24], split UED [25] or higgsless supersymmetric models [26]. As it

turns out, in this limit it is possible to determine the spin of the decaying particle

and the invisible particle provided the masses of the new particles are known to some

extent. In contrast to model dependent approaches to spin determination [19, 27], we

follow a bottom-up approach that can be used for all models with heavy intermediate

particles and only renormalizable operators. The case of lighter intermediate particles

will be presented in a subsequent paper.

This paper is organised as follows: We first present the basic ideas using a toy
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model in section 2. Afterwards, we present a convenient parametrisation of the

differential width for the three-body decays as the product of a phase space factor and

a polynomial. In section 3 we develop a strategy to determine the spins exploiting

specific properties of the coefficients of this polynomial. We also investigate the

impact of different decay topologies and discuss qualitatively the influence of the

mass of the intermediate particle. In section 4 we test our strategy with the help

of Monte Carlo examples and conclude in section 5. The formulas of the various

coefficients are given in the appendix.

2. Basic Idea and General Setting

We investigate decays of the type X → ffY where X and Y are new particles being

either scalars, vector bosons or fermions. Here we assume that all 2-body decays

of X are either kinematically forbidden or at least loop-suppressed compared to the

tree-level three-body decays considered. As mentioned above we assume that all off-

shell particles, which we denote collectively by I, mediating these decays are much

heavier than X , e.g. mI ≫ mX . In practice it is sufficient to assume mI >∼ 5mX as

we will show below. In addition we assume that Y is a colour singlet as it should

serve as potential dark matter candidate.

We will be as general as possible by taking the most generic Lagrangian with arbitrary

couplings of O(1) and dimension 4 operators. From this we calculate the widths for

the decays of Y assigning different spins to X and Y , respectively. To simplify the

notation we will abbreviate the decays S → f f̄S, S → f f̄V , V → f f̄S, V → f f̄V

and F → f f̄F by (S, S), (S, V ), (V, S), (V, V ) and (F, F ), where S, V and F stand

for scalar, vector boson and fermion, respectively. Note, that the fermionic case

covers both, Dirac- and Majorana-fermions.

After integrating over the momentum of the escaping particle Y , we expand the

differential widths in powers of ǫ = mX/mI and give the resulting expressions as a

phase space factor times a Laurent series (actually polynomials in most cases) of a

dimensionless quantity ŝ which is derived from the invariant mass s = (pf + pf̄)
2, pf

and pf̄ are the four momenta of the SM-fermions. Note, that s = m2
ff̄

in the case of

subsequent two body decays studied in the literature [5, 6, 7, 8, 9, 16, 17, 28].

Most of the features can be understood by considering the decays of a particle X

charged under SU(3) into two massless quarks and Y . Considering coloured particles

in the first place is motivated by the fact that they in general have sizable cross

sections at the LHC. Moreover, due to gauge invariance only a subset of all topologies

are allowed which simplifies the obtained expressions considerably. Therefore we will

first discuss these cases. The additional features of either taking X as an SU(3)

singlet and/or the case that the SM-fermions being massive (i.e. top quarks) will be

discussed afterwards.
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The coefficients in the Laurent series depend obviously on the couplings and masses

of the particles involved and one might ask if and how one gets information on

the spins without knowing these quantities. It turns out we have to assume in our

approach that the mass of Y and the mass difference (mX −mY ) are known within a

given uncertainty but in general we do not need any information on the underlying

couplings. The basic idea is that different spin assignments lead to different relations

between these coefficients which can be exploited. There is however one obstacle: one

cannot exclude on logical grounds that there is a ’conspiracy’ between the couplings

suppressing the dominant terms in the ǫ expansion. This complicates life somewhat

but even in that case relations between the coefficients are maintained as discussed

below.

2.1 Dependence of the invariant mass distribution on the spins of un-

known particles

We first discuss a set of toy models where the new particles X and Y are either scalars

and/or vector bosons coupling to massless u-quarks and an additional heavy fermion

which we assume to be a Majorana-fermion. The invariant fermion mass squared is

s = (pf + pf̄)
2 = E1E2 · (1− cos θff̄ ) where Ei are the SM fermion energies and θff̄ is

the angle between them in the rest-frame of X . In Figure 1 we show the differential

decay width divided by the phase space factor which is shown independently (red/full

line). The behaviour of the different curves can be understood using helicity and spin

arguments.

The SM-fermions have definite helicity states as we have assumed them to be mass-

less. There are two kinematical configurations where the spatial angular momentum

in the rest-frame of X is zero corresponding to cos θff̄ = ±1: (i) The particle Y

is at rest and the two fermions are back to back corresponding to cos θff̄ = −1

with s = smax. In this case the total spin of the fermions sums up to one if it is

either an uLūL or uRūR combination whereas the total spin of the fermions is zero

for the uLūR and uRūL combinations. Here we have introduced uL,R = PL,R u with

PL,R = (1 ∓ γ5)/2. (ii) The particle Y flies opposite to the two fermions which are

flying parallel now corresponding to cos θff̄ = 1 with smin = 0. In this case the total

spin of the fermions sums up to one if it is either a uLūR or a uRūL combination

whereas the total spin of the fermions is zero for the uLūL and uRūR combinations.

(S, S):

The matrix element Mfi for this decay has the generic form

Mfi = uu (grPR + glPL)SI(n
∗
lPR + n∗

rPL)vu ≃
1

mI
uu(grn

∗
l PR + gln

∗
rPL)vu

corresponding to the uLūR and uRūL combinations since in the limit of a very heavy

intermediate particle the corresponding propagator reduces to SI = 1/(p/ − mI) ≃
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PS
(S,S)
(S,V)
(V,S)
(V,V)
(F,F)s

dΓ
ds

: PS

s0 smax

Figure 1: Differential width divided by a phase space factor PS for the different decays

X → ffY , X,Y ∈ S, V taking mf = 0, mX/mY = 0.1 and all couplings equal. In addition

the phase space factor is drawn.

1/mI . As the total angular momentum of the final state has to be zero, the matrix

element has to vanish in case cos θff̄ = 1 (s = 0) as can also be seen in Fig. 1 whereas

for cos θff̄ = −1 the helicity assignment yields a non-vanishing matrix element. In

the plot we have taken for all cases nl = nr = gl = gr.

(S, V ):

This process has a more involved structure since the vector boson can have polari-

sation ±1, 0. Using the matrix element one sees that in contrast to the previous case

one expects a non-vanishing matrix element for all s

Mfi = uu (grPR + glPL)SIγµ(n
∗
l PR + n∗

rPL)vuǫ
µ
Y

≃
1

mI

uuγµ(grn
∗
rPL + gln

∗
lPR)vuǫ

µ
Y .

These are the uLūL and uRūR combinations where for s = 0 the total spin of the

fermions is zero and for s = smax it is one. In the limit θff → 0 (s → 0) the amplitude

is proportional to ((mX/mY )
2−1) (m2

X−m2
Y ). The first factor is larger and diverges

as mY → 0 which reflects the longitudinal component of the vector boson. This can

be nicely seen in the blue (dashed) line in Fig. 1.

(V, S):

In this case, we start with a spin 1 boson. A similar reasoning as before shows

that the general trend should be opposite to the S → f f̄V case which is confirmed

by Fig. 1 (pink/small dashed line).

(V, V ):

This decay can have several helicity combinations which we want to sketch here.

The matrix reads

Mfi = uu γµ(grPR + glPL)SIγν(n
∗
rPL + n∗

l PR)vuǫ
ν
Y ǫ

µ∗
X
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≃
1

mI

uu γµγν(grn
∗
rPL + gln

∗
l Pl)vuǫ

ν
Y ǫ

µ∗
X

As in the (S, S) case we find the uLūR and uRūL combinations. However, now in

principle for all s one can expect a non-vanishing matrix element squared. However,

as can be seen in Fig. 1 it can be zero for s = 0 for special combinations of the

couplings, e.g. as in our case with nl = nr = gl = gr (cyan/dot-dashed line). In this

sense the example shown is an extreme case and in general the matrix element will

be non-zero for s = 0.

2.2 General structure of the differential widths

We now discuss the general structure for the decays

X(p,mX) → f(q1, mf ) + f(q2, mf) + Y (q3, mY ) (2.1)

with X and Y being scalars (S), vectors (V ) or fermions (F ) and heavy interme-

diate particles I with mass mI . We will consider several contributions at the same

time and assume that the masses of all intermediate particles are equal to maximise

interference effects which usually complicate things. Beside the usual Mandelstam

variables

s = (p− q3)
2 = (q1 + q2)

2 ; t = (p− q2)
2 = (q1 + q3)

2

and u = (p− q1)
2 = (q2 + q3)

2 = −s− t−m2
X −m2

Y + 2m2
f

we introduce the dimensionless parameters τi and ŝ

ŝ =

(
4τ 2f + (τY − 1)2

)
− 2s

m2
X(

4τ 2f − (τY − 1)2
) ; τY =

mY

mX
; τf =

mf

mX
; τC =

MC

mX
(2.2)

where MC denotes dimensionful couplings, e.g. as they appear in the ZZH vertex

or the trilinear soft SUSY breaking parameters Ai. We note that ŝmin = −1 and

ŝmax = 1.

We expand the matrix elements squared in powers of ǫ = mX/mI and perform an

integration over t as in this way we integrate over the momentum of the unobserved

particle Y . For the t-integration we find the boundaries

t± =
1

4
m2

X

(
(τY + 1)2 + ŝ

(
4τ 2f − (τY − 1)2

)

±
(
(τY − 1)2 − 4τ 2f

)
×

√
(1− ŝ2)

(
(1− ŝ)((τY − 1)2 − 4τ 2f ) + 8τY

)

4τ 2f + (τY − 1)2 + ŝ
(
(τY − 1)2 − 4τ 2f

)
)

(2.3)

PS =

∫ t+

t
−

dt
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=
(
(τY − 1)2 − 4τ 2f

) m2
X

2

√
(1− ŝ2)

(
(1− ŝ)((τY − 1)2 − 4τ 2f ) + 8τY

)

4τ 2f + (τY − 1)2 + ŝ
(
(τY − 1)2 − 4τ 2f

) (2.4)

where we have also defined the ’phase space’ PS. In this way the differential decay

rate can be written as

dΓ

dŝ
=

PS

(2π)3 256 mX

(
Z

(aŝ + b)2
+

A

aŝ+ b
+B + C · ŝ+D · ŝ2 + E · ŝ3 + F · ŝ4

)

(2.5)

where a =
(
(τY − 1)2 − 4τ 2f

)
and b =

(
(τY − 1)2 + 4τ 2f

)
. The prefactors Z,A, . . . , F

are functions of ǫ, the τi and the couplings. Note that Z and F only appear in the case

of the decay (V, V ). As we exemplify the main features for massless SM-fermions,

we display Eq. (2.4) for this case:

t± = 1
4
m2

X

(
(τY + 1)2 − ŝ(τY − 1)2 ± (1− τY )

√
(1− ŝ) ((1− ŝ)(τY − 1)2 + 8τY )

)

PS = 1
2
m2

X(1− τY )
√
(1− ŝ) ((1− ŝ)(τY − 1)2 + 8τY )

(2.6)

2.2.1 Decays of bosons

As one can see from Table 1, there are three ’topologies’ which contribute differently

to the decay rate. The second ’topology’ only contributes if both, the Y - and the

X-particle, are their own anti-particles. Obviously, topologies 1 and 2 will in general

contribute at O(ǫ2) whereas the third one in general only at O(ǫ4) due to the different

structures of the propagators. Only in the case where the dimensionfull scalar-vector-

vector or triple scalar couplings are of O(mI), the third topology might contribute at

a smaller power of ǫ as will be discussed below. In the further calculation we neglect

terms higher than O(ǫ4).

The generic Lagrangian density for these decays reads as

Li,j,k = XiIfG̃if + YiIfÑif + IifT̃if + IiXjYkΓ̃ijk + h.c. (2.7)

where i, j, k = s, v and Ii is the intermediate off-shell particle. The generic couplings

are given by

G̃i : Gs = (g(r, s)PR + g(l, s)PL) ; Gv = γµ (g(r, v)PR + g(l, v)PL)

Ñi : Ns = (n(r, s)PR + n(l, s)PL) ; Nv = γµ (n(r, v)PR + n(l, v)PL)

T̃i : Ts = (s(r)PR + s(l)PL) ; Tv = γµ (v(r)PR + v(l)PL)

(2.8)

and for Γ̃ijk

Γsss = c(s)MC ; Γvvs = Γvsv = Γ(vµ, vν , s) = c(v)MCg
µν

Γsvv = Γ(s, vµ, vν) = c(s)MCg
µν ; Γvs1s2 = Γ(vµ, s1, s2) = c(v)(ps2 − ps1)

µ

Γs1s2v = Γs1vs2 = Γ(s1, s2, v
µ) = c(s)(ps2 − ps1)

µ

Γv1v2v3 = Γ(vν1 , v
ρ
2 , v

µ
3 ) = c(v)((pv1 − pv2)

µgνρ + (pv2 − pv3)
νgµρ + (pv3 − pv1)

ρgµν)
(2.9)
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Decay Top. 1 Top. 2 Top. 3(s/v)

(S, S)

n∗(j, s)

g(i, s)

n(j, s)

g∗(i, s)

s∗(i)

c(s)Mc

v∗(i)

c(v)

(S, V )

n∗(j, v)

g(i, s)

n(j, v)

g∗(i, s)

s∗(i)

c(s)

v∗(i)

c(v), Mc

(V, S)

n∗(j, s)

g(i, v)

n(j, s)

g∗(i, v)

s∗(i)

c(s)

v∗(i)

c(v), Mc

(V, V )

n∗(j, v)

g(i, v)

n(j, v)

g∗(i, v)

s∗(i)

c(s), Mc

v∗(i)

c(v)

Top. 1 (s) Top. 2 (s) Top. 3 (s) Top. 1 (v) Top. 2 (v) Top. 3 (v)

n∗(j, s)

g(i, s)

n(j, s)

g∗(i, s)

T ∗(j, s)

d(i, s)

n∗(j, v)

g(i, v)

n(j, v)

g∗(i, v)

T ∗(j, v)

d(i, v)

Table 1: Topologies for the decays of bosons X → ffY (top) and fermions (F,F) (bottom)

with i, j ∈ {l, r} (see also Eq. (2.8)).

where the indices of the vertex expressions Γijk correspond to those of the Lagrangian

in Eq. 2.8.
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The matrix element including all topologies shown in Table 1 reads

Mi,j = u(q1, mf)GiFp/ γ0N †
j γ

0 v(q2, mf)ǫi(p)ǫj(q3)

+u(q1, mf)NjFp/ γ0G†
iγ

0 v(q2, mf)ǫi(p)ǫj(q3)

+
∑

k=s,v

ΓkijWP,iu(q1, mf)γ
0T †

kγ
0v(q2, mf)

(2.10)

with the ’polarisation’ vectors

ǫs = 11; ǫv = ǫ̃µ

and the fermion and boson propagators

Fp= ip/ +mI

p2−m2
I

; WP,s = i 1
p2−m2

I

; WP,v = −i
(gµν−pµpν/m2

I)
p2−m2

I

(2.11)

2.2.2 Decays of fermions

In this case the generic Lagrangian is given by

Li = IifGiMx + IifNiMy + IiMyΓiMx + IifTif + h.c. (2.12)

where Mx,y denote the spinors of the new fermions and i = s, v denotes whether the

exchanged particle is a scalar or a vector boson. The couplings are similar to those

above:

Mi =
[
u(q1, mf )Giu(p,mX)

]
Wp,i

[
u(q3, mY )γ

0N †
i γ

0v(q2, mf)
]

+
[
u(q1, mf)Niv(q3, mY )

]
Wp,i

[
v(p,mX)γ

0G†
iγ

0v(q2, mf)
]

+
[
u(q3, mY )Γiu(p,mX)

]
Wp,i

[
u(q1, mf )γ

0T †
i γ

0v(q2, mf)
]

(2.13)

corresponding to the topologies given in Table 1 with the same couplings as in Eq.

(2.8, 2.9) and additionally:

i = s : Γs = (d(s, r)PR + d(s, l)PL)

i = v : Γv = γµ (d(v, r)PR + d(v, l)PL)
(2.14)

3. Strategy for Spin Identification

In this section we discuss the strategy for discriminating the various scenarios with

different spins assigned to the particles X and Y . The procedure is to find suitable

relations or to mark the signs of the different coefficients Z,A, . . . , F . This is done

in the second part of this chapter. Before this we will have a look at the different

topologies and their contribution depending on the chosen colour structure.
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Our main focus here is on the case of massless fermions as this is already sufficient to

get the required information. This immediately implies a considerable simplification

because some of the coefficients for the differential width are zero and we obtain

dΓ

dŝ
=

PS

(2π)3 256 mX

(
B + Cŝ+Dŝ2 + Eŝ3 + F ŝ4

)
(3.1)

The formulas for the coefficients are given in the appendix for the corresponding

lowest order in ǫ. For the case (S, S) we also give the higher orders up to ǫ4. More-

over, it turns out that the decays in top-quarks, the only SM fermion with mass of

O(100 GeV), behave in the same way and the discrimination is also possible in this

case as will be discussed at the end of this section. This implies that one has a second

system to test the spin assignments in an independent way.

We start with a subset of the topologies given in Table 1, namely topologies 1 and

2 as these are typically realised in extensions of the SM, e.g. in models with extra

dimensions or in SUSY. Moreover, we will first further restrict ourselves to scenarios

where X is charged under SU(3), e.g. a colour octet gluino or a KK excitation of a

gluon, and Y is electrically neutral and uncharged under SU(3). This is motivated

by the fact that the LHC is a hadron collider. In the second step we add the third

topology. But it turns out that in the case of scalar contributions to (S, S) and

(S, V ) gauge invariance allows only two additional terms because the SM-fermions

are charged under SU(3). However, these contributions will in general be of order ǫ4

due to the boson propagator except for the case where the trilinear scalar coupling is

of order mI in which there might be contributions at order O(ǫ2). In the third step

we will also discuss the complications and their potential solutions in case that X is

an SU(3) singlet.

3.1 Signs of the coefficients

It turns out that some of the coefficients have a definite sign independent of the

couplings and masses involved. This important fact will be used later to discriminate

between the different spin assignments of X and Y . We collected the signs of the

different coefficients for all decays of bosons in Table 2 where we have expanded the

coefficients in powers of ǫ, e.g.

B =
4∑

k=2

Bkǫ
k (3.2)

Some of the signs in Table 2 are obtained analytically but several are gained numer-

ically by scanning and inserting random couplings in the range [−1, 1]. There are

some coefficients where the sign cannot be determined without knowing the mass

ratios or the couplings which are marked by ”±”. Moreover, we have put a 0 when-

ever the coefficient itself vanishes. We give the signs for three cases, ordered from

the most general one to the most restricted one: (i) X is an SU(3) singlet, where

10



(S, S) (S, V ) (V, S) (V, V )

ǫ2 s c 1+2 s c/1+2 s c/1+2 s c/1+2

B2 + + + + + + + ± ±

C2 + + + ± ± + + ± ±

D2 0 0 0 + + + + ± ±

E2 0 0 0 0 0 0 0 + +

ǫ3

B3 ± ± 0 ± 0 ± 0 ± 0

C3 ± ± 0 ± 0 ± 0 ± 0

D3 0 0 0 ± 0 ± 0 ± 0

E3 0 0 0 0 0 0 0 ± 0

ǫ4

B4 + + + + + + + + +

C4 ± + + ± ± ± ± ± ±

D4 ± − − ± ± ± ± ± ±

E4 0 0 0 ± ± ± ± ± ±

F4 0 0 0 0 0 0 0 ± ±

Table 2: Signs of the coefficients for the case of a boson decaying into another boson and

massless SM-fermions in the final state for different powers of ǫ. The rows correspond to

the cases: (s) X is an SU(3) singlet, (c) X is charged under SU(3) taking all possible

topologies into account and (1 + 2) X is charged under SU(3) taking topologies 1+2 into

account. The ± marks the cases where the sign cannot be determined without knowing

the masses/couplings and 0 marks the cases with a vanishing coefficient.

all topologies of Table 1 contribute. The corresponding columns are denoted by s.

(ii) X is charged under SU(3) and all possible contributions allowed are taken into

account and the corresponding columns are denoted by c. (iii) X is charged under

SU(3) and only topologies 1+2 contribute and, thus, the corresponding columns are

denoted by 1+2. In the subsequent sections these cases will be discussed in the re-

versed order focussing on the terms of order ǫ2. The ǫ4 order is only of interest, if

the leading order is zero, which is the case for some special coupling arrangements

discussed in section 3.4.

In case of a new fermion X it turns out that the result does neither depend on the

spin of the exchanged particle nor on the topology, e.g. it does not matter if all

topologies are taken or only a subset. Since we have only bosonic propagators there

are only the O(ǫ4) contributions and we find:

sign(B4) = + , sign(C4) = ± , sign(D4) = − , sign(E4) = 0 (3.3)

3.2 Decays into massless SM-fermions in case of topologies 1+2

Let’s assume that we have measured the differential decay width of a new particle
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and determined the coefficients introduced above accurately in a fit. In section 4

we will discuss first Monte Carlo studies at the parton level where we also review

the obtainable accuracy. This can be combined with our knowledge on the various

coefficients introduced so far to determine the spins of the new particles or at least

to exclude certain possibilities. The main strategy is summarised in Fig. 2 and

explained in some more detail below.

Let’s start with the E term which is only non-zero in the (V, V ) case. This imme-

diately implies that (V, V ) is preferred once the ’measured’ E term is larger than 0.

For consistency we check that B > 0. The next step is to look at the D term as for

D 6= 0 and E = 0 the sign of D determines whether one is dealing with fermions

(D < 0) or bosons (D ≥ 0) where the latter case includes (S, S), (S, V ) and (V, S).

In case of D = 0 only the case (S, S) remains. To further distinguish the cases (S, V )

and (V, S) from each other, one has to consider the ratios:

(S, V ) : D/C = (τY −1)2

22τ2
Y
−4τY −2

∈ [−∞,−1
3
] ∪ [0,∞]

(V, S) : D/C = − (τY −1)2

2(τY (τY +2)−11)
∈ [0, 1

22
]

(S, V ) : C/B =
22τ2Y −4τY −2

τY (25τY +6)+1
∈ [−2, 1

2
]

(V, S) : C/B = 8(τY +9)
τY (τY +6)+25

− 2 ∈ [1
2
, 22
25
]

(S, V ) : D/B = (τY −1)2

τY (25τY +6)+1
∈ [0, 1]

(V, S) : D/B = (τY −1)2

τY (τY +6)+25
∈ [0, 1

25
]

(3.4)

since here the dependence on the unknown couplings cancel as can be seen from

eqs. (A.6) and (A.7). For these decays we have three possible ratios shown in

Eq. (3.4). We see that the ratio C/B has no overlap and hence best suited ratio

to distinguish between (S, V ) and (V, S). The D/B and D/C ratios seem to be less

useful since the intervals overlap, but except for τY = 1, e.g. mY = mX , but they

are never equal for τY 6= 1. In the range where τY is close to one, the SM-fermions

become very soft and this part will be excluded because a lower cut on their energies

is put in practice. Last but not least we note that the (S, S) can be further checked

by the requirement that B/C = 1 as can be seen from Eq. (A.3). Therefore, indepen-

dent of the mass ratios, one can state that all those five cases can be discriminated

from each other.

3.3 Impact of the third topology

We have seen in section 2.2 that the dominant contributions stem from topologies

1 and 2 of Table 1 in case of decays of bosons because the third topology generally

contributes at O(ǫ4). One might asked if one of the dimensionful couplings in the

diagrams of the third topology can become so large to disturb the above strategy.

Note, that in case of a new fermions higher orders in ǫ have no impact and, thus, we

restrict the discussion here to decays of bosons.

12



E ≤ 0S → ffS

S → ffV

V → ffS

F → ffF

V → ffV

S → ffV, ǫ4

V → ffS, ǫ4

V → ffV

D ≥ 0 F → ffF

S → ffV, V → ffS, S → ffS

D = 0
S → ffV

V → ffS
S → ffS

√

×

×

×

√

√

Ratios:
D/C
C/B
D/B

S → ffV

V → ffS
?

?

Figure 2: Flowchart for the strategy to discriminate different spin assignments for mf = 0

using the signs of the coefficients given in section 3.1. Green (solid frame) boxes are for the

case of taking only the leading order into account. Impact or dominance of higher order

terms is given by the yellow (dashed frame) boxes, see text for details.

Let us first consider the case that X is in a non-trivial SU(3) representation. Here

only in the (S, S) there is a potentially dangerous contribution because the trilinear

scalar coupling can in principle be of order mI . However, from Eq. (A.3) we see that

only the equality B = C gets broken, the D-term will only get a tiny contribution,

and thus the general strategy should still work. In case of the scalar exchange in

the third topology of the (S, V ) case the coupling is momentum dependent and is of

order mX and one is safe again. In the case X is a colour singlet all diagrams for

the third topology in Table 1 contribute in principle. Here one has to distinguish

two cases: (i) there are no new vector bosons or the new vector bosons do not

belong to a new gauge group. In this case a detailed inspection of the diagrams

shows that one arrives at the same conclusions as above, because all dimensionful

couplings, which had not been considered before, have to be of the order mX due

to SUL(2) gauge invariance. (ii) There is a new gauge group at higher energies to

which the intermediate vector bosons belong. In this case the SVV coupling as well

as the masses of the vector boson will be of same order of magnitude and, thus, our

13



(S, S) (S, V ) (V, S) (V, V )

ǫ4 s c 1+2 s c/ 1+2 s c/1+2 s c/1+2

B4 + + 0 + + + + + +

C4 ± + 0 ± ± ± − ± ±

D4 + 0 0 ± − ± ± − −

E4 0 0 0 + + + + + +

F4 0 0 0 0 0 0 0 + +

Table 3: ǫ4 coefficients for the case that ǫ2, and thus also ǫ3, are fine-tuned to vanish;

mf = 0.

assumption that the intermediate particle is much heavier than the decaying one

does not hold in this case.

3.4 Special combinations of couplings

Up to now we have considered only the leading terms in case of decays of new bosons.

However, it can happen that for special helicity assignments, the leading order ǫ2

becomes zero. An example is the (S, S) case as can be seen in eqs. (A.3) and (A.4)

where the leading order is proportional to (g(r, s)n(l, s) + g(l, s)n(r, s))2 which is 0

in the case of e.g. g(l, s) = n(r, s) = 0. In such cases the p//m2
I part of the fermion

propagator becomes important which contributes only at O(ǫ4). The question now

is to which extent we would arrive at wrong conclusions using the strategy discussed

so far. In table 3 we give the resulting signs of the coefficients which have to be

compared with the O(ǫ2) coefficients of Table 2.

We start with the case where X is charged under SU(3). One immediately sees that

the cases (S, S) and (V, V ) are not affected. The problematic ones are (S, V ) and

(V, S) which now get a positive E as is the case of (V, V ) in the leading order. Unfor-

tunately, ratios of the other coefficients do not help if one has no further information

on couplings and/or masses of the intermediate particles. We have marked this pos-

sibility in Fig. 2 with the yellow boxes surrounded by red dashed lines. However,

we want to stress that this requires fine-tuning between different couplings which

although being unlikely, cannot be excluded on logical grounds.

In the case that X is a SU(3) singlet the situation gets even a little bit more com-

plicated, because now also in case of (S, S) the D coefficient is non-zero. However,

it is still positive and, thus, it can for sure not be confused with the case of a new

fermion. In the (V, V ) case on the other hand we get in principle even more informa-

tion as now also the F is non-zero which immediately tells us that there is a special

combination of couplings.

3.5 Final states containing massive SM-fermions

Here we summarise the changes for massive SM-fermions, which in practice only is

14



(S, S) (S, V ) (V, S) (V, V )

ǫ2 s c/1+2 s c/ 1+2 s c/1+2 s c/1+2

A2 0 0 + + + + + +

B2 ± ± ± ± ± ± ± ±

C2 ± ± ± ± + + ± ±

D2 0 0 ± ± + + ± ±

E2 0 0 0 0 0 0 + +

ǫ3

A3 0 0 ± ± ± ± ± ±

B3 ± ± ± ± ± ± ± ±

C3 ± ± ± ± ± ± ± ±

D3 0 0 ± ± ± ± ± ±

E3 0 0 0 0 0 0 ± ±

ǫ4

Z4 0 0 0 0 0 0 − −

A4 + 0 + + + + + +

B4 ± + ± ± ± ± ± ±

C4 ± + ± ± ± ± ± ±

D4 ± − ± ± ± ± ± ±

E4 0 0 ± ± ± ± ± ±

F4 0 0 0 0 0 0 ± ±

Table 4: Same as Table 2 but for massive SM-fermions.

(S, S) (S, V ) (V, S) (V, V )

ǫ4 s c 1+2 s c/1+2 s c/1+2 s c/1+2

Z4 0 0 0 0 0 0 0 − −

A4 + 0 0 + + + + + +

B4 ± + + ± ± ± + ± ±

C4 ± + + ± ± ± − ± ±

D4 + 0 0 ± ± ± ± ± ±

E4 0 0 0 ± + + + ± +

F4 0 0 0 0 0 0 0 + +

Table 5: Same as Table 3 but mf 6= 0.

important for top-quarks. The signs of the coefficients are given in Table 4. It turns

out, that things hardly change but for the fact that one has to fit more coefficients.

Comparing tables 2 and 4 one sees that the same strategy can be used in principal.

However, for distinguishing between the (S, V ) and (V, S) cases the ranges for the

ratios of the coefficients change. Moreover, only in the ratio D/C the unknown
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couplings cancel and we find

(S, V ) : D/C =
(τY −1)2−4τ2

f

12τ2
f
+22τ2

Y
−4τY −2

[−∞,−1
3
] ∪ [0,∞]

(V, S) : D/C =
(τY −1)2−4τ2

f

2(6τ f2−τY (τY +2)+11)
[0, 1

22
]

(3.5)

where one has to use

1 ≥ τY + 2τf (3.6)

due to total energy/momentum conservation. As in the case of massless SM-fermions,

the overlap region of the two intervals is for the case τY → 1−2τf , e.g. the kinematical

limit, where all particles are practically at rest in the centre of mass system of X . In

general this ratio will be either negative or much larger than 1/2 in the (S, V ) case.

Note that we have A = 0 for the (S, S) case which, thus, serves as a confirmation of

this case. Also in case of a new fermion we arrive at the same conclusions because

sign(A4) = + , sign(B4) = ± , sign(C4) = ± , sign(D4) = − , sign(E4) = 0

(3.7)

The only exception is where this decay is mediated solely by scalars in the third

topology as in this case A4 = 0.

For completeness, we also give the results in the case that the leading orders vanish

in the case of decays of bosons in Table 5. It turns out that this case is the same

as for the case of massless SM-fermions discussed above except that now in general

also A will be non-zero.

3.6 Dependence on the mass of the intermediate particle(s)

We now address the question how small ǫ has to be so that our strategy works.

For this we consider two examples: (I) g(r) = g(l) = n(r) = n(l) = 1 where

the leading order dominates and (II) g(r) = n(r) = 1 but g(l) = n(l) = 0 so

that the leading order vanishes in case of the bosonic decays and the subleading

orders become dominant. Note, that in case of new fermions we did not manage

to find a combination where the leading order vanishes. In all cases we have taken

mX = 1 TeV , mY = 100 GeV and mf = 0. We have checked that our results do

not depend crucially on these values except for the cases where mY gets close to

mX which would imply soft SM fermions and experimental difficulties to observe the

decay.

In figures 3 and 4 we show the relative deviation

R =
dΓǫ − dΓH

dΓH

with dΓi =
1

Γi

dΓi

d ŝ
, (3.8)

and H denotes the limit mI → ∞ and Γǫ the differential width for a given ǫ. We find

that for a decaying scalar and for a decaying fermion the deviation is always below
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ŝ

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

R

(F,F)   , Iv

2 TeV
3 TeV
5 TeV
7 TeV

10 TeV
15 TeV
30 TeV

ŝ

Figure 3: Ratio R for the processes X → f f̄Y for scenario (i) taking mX = 1 TeV ,

mf = 0, mY = 0.1 TeV . We have calculated the decay width for the following masses of

the intermediate particle: mI = 2, 3, 5, 7, 10, 15, 30 TeV .

20%. In case of a decaying vector particle the situation is more difficult and only

for ǫ ≤ 1/5 we get R <∼ 0.2 for all values of ŝ. The reason for these large deviations

for |ŝ| close to one is, that here the differential widths becomes zero and the rise/fall

at the ends of the interval gets steeper the smaller ǫ is. This also implies, that in

the corresponding intervals for ŝ one will observe only a few events. The situation

improves for a decay of a vector boson if the subleading terms become dominant as
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Figure 4: Relative deviation for differential decay width the processes X → f f̄Y with

couplings (II).

in Fig. 4.

In summary: our strategy should work well in all cases if ǫ is below 1/5, in cases of

scalar particles or spin 1/2 fermion ǫ = 1/2 is already a reasonable value. This is for

example a natural value for gluino decays in supersymmetric models.
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4. Testing our Strategy with Monte Carlo Simulations

We now test our strategy in Monte Carlo simulations at the parton level. For this

one of us created data sets and the second one tried to find out the spin-assignments

without any prior knowledge but mY and (mX − mY ) and their uncertainties. We

presume that the first one is given by an independent source with a precision of

10% and the second one with a precision of 3%. For definiteness we have taken

mX = 1 TeV , mY = 100 GeV andmf = 0. In the following we will denote by (B,C),

(B,C,D), (B,C,D,E) and (B,C,D,E, F ) the differential width in Eq. (3.1) where

all but the given coefficients are zero.

4.1 Fitting procedure

In practice one will not have dΓ
dŝ
(ŝ) but one will have the number of events for a given

interval [ŝi, ŝi +∆ŝ]. For this reason we actually fit ’distributions’ of the form

n∑

i=1

∫ −1+i∆ŝ

−1+(i−1)∆ŝ

dΓ

dŝ
dŝ (4.1)

where ∆ŝ = 2/n, n is the number of bins considered and dΓ
dŝ

is given by Eq. (3.1).

For the creation of the ’data’ we have used our model file for generic particles and

couplings [29] for the O’Mega/WHIZARD Monte Carlo generator [30, 31] which

contains generic particles and couplings.

For fitting we use a linear least squares approach as described e.g. in [32] and the

references given therein. We will exemplify this for the case of (B,C,D):




x1 x2
1 x3

1

x2 x2
2 x3

2
...

xn x2
n x3

n


 ·




B

C

D


 = X̂ ·




B

C

D


 =




data1
data2

...

datan


 (4.2)

where n is the number of bins. This equation can be solved by rewriting it as:

(X̂)T X̂ · ~c = (X̂)T ~d (4.3)

where ~c = (B,C,D)T and ~d contains the ’measured’ data of the differential width

integrated over intervals of length ∆ŝ. There are various methods to solve this

equation, e.g. QR-decomposition. The fit is reliable if the matrix (X̂)T X̂ is well-

conditioned, e.g. if its eigenvalues are of similar order of magnitude. After solving

Eq. (4.3) we calculate the corresponding χ2

χ2 =
1

n− j

∑

i

(Expectedi −Observedi)
2

Expectedi

(4.4)
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where n is the number of bins (= number of data points) and j the degrees of

freedom (in this case the number of coefficients) of the fit function. We estimate the

error for the coefficients by adding a Poisson noise to the data and determine the

corresponding confidence interval after fitting.

4.2 A supersymmetric example

As a first test we study a focus point scenario which is inspired by SPS2 [33]: m0 =

3 · 103 GeV, m1/2 = 3 · 102, A0 = 0, tanβ = 10 and sign(µ) > 0. We simulate for

the gluino decay 2k and 10k events and study also the effect of different binning

sizes, namely 10 and 50 bins. Afterwards we fit the resulting distribution to all

possible cases. Here we have assumed that the following information on the masses

is given: (mX − mY ) = 688 ± 23 GeV , mY = 121 ± 12 GeV with a Gaussian

distribution. The results are summarised in Table 6. As one does not know neither

the absolute values of the couplings nor the intermediate masses, one has the freedom

to normalise B to 1 and, thus, only the other coefficients and their uncertainties are

given. The χ2 favours for both 10 and 50 bins slightly the (B,C,D) polynomial.

However, if higher powers in ŝ are included, one still obtains a good fit and the χ2

will not be sufficient to discriminate between the different possibilities. This is a quite

generic feature because usually there is a hierarchy between the non-zero coefficients:

|B|, |C| ≫ |E|, |F |. The (B,C) case can be ruled out since B 6= C within the range

of the error bars. The smallness of the parameters and the large errors on the E

and F coefficients of the (B,C,D,E) and (B,C,D,E, F ) models suggest that those

values are zero. The remaining model is (B,C,D) with negative D which suggests

(F, F ). We find it encouraging that one gets already for 2000 events first information

including that the (S, S) case can be excluded.

4.3 Large sample tests

In the second step we have tested our strategy for a large set of random couplings

fixing however the kinematics to mX = 1 TeV , mY = 100 GeV and all mI = 15 TeV .

The latter number is not crucial as long as it is above 5 TeV (2 TeV ) in case of

decaying vector bosons (decaying scalars and fermions). We have generated 100

different sets with random couplings for each of the decays (S, S), (S, V ), (V, S),

(V, V ) and (F, F ) and we have generated for each set of couplings 104, 105 and 106

events. In an ideal world one could use the strategy depicted in Fig. 2 without any

problems. In reality there will be some smearing of the data from the measurement

itself as well as from the background subtraction. To be sure that we do not miss

anything we have slightly advanced our strategy and apply it to the following model

list

{(S, S), (S, V ), (V, S), (F, F ), (V, V ), (V, V )4} (4.5)
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Coef. χ2 (F,F)10 χ2 (F,F)50 χ2 (F,F)10,2k
C 5.9 0.210± 0.061 1.50 0.208± 0.071 1.58 0.208± 0.126

C 0.55 0.089± 0.077 0.62 0.089± 0.076 1.55 0.089± 0.155

D −0.232± 0.106 −0.227± 0.110 −0.227± 0.252

C 0.63 0.079± 0.141 0.63 0.067± 0.128 1.75 0.067± 0.300

D −0.218± 0.150 −0.197± 0.139 −0.197± 0.322

E 0.028± 0.227 0.060± 0.228 0.060± 0.536

C 0.75 0.080± 0.149 0.64 0.077± 0.160 1.14 0.077± 0.401

D −0.215± 0.456 −0.169± 0.340 −0.169± 1.108

E 0.025± 0.260 0.035± 0.311 0.035± 0.738

F −0.006± 0.516 −0.046± 0.443 −0.046± 1.315

Table 6: Testing of the SUSY focus point taking 10 bins in case of 2000 events and

10 and 50 bins for 10000 events. Input for the fit is: (mX − mY ) = 688 ± 23 GeV ,

mY = 121 ± 12 GeV with gaussian distribution, mI = 3026 GeV . The coefficients are

normalised such that B = 1 and the uncertainties are at 3σ. The analytic values for the

coefficients are B = 1, C = 0.123, D = −0.188.

and the corresponding differential widths. (V, V )4 denotes the case, where only the

4th order in ǫ of (V,V) remains. We have tested for the following criterions:

1. B 6= C → remove (S, S)

2. D > 0 → remove (F, F ); D < 0 → remove (S, V ), (V, S)

3. C/B in (S,V) interval → if not remove (S, V )

4. C/B in (V,S) interval → if not remove (V, S)

5. D/B in (S,V) interval → if not remove (S, V )

6. D/B in (V,S) interval → if not remove (V, S)

7. D/C in (S,V) interval → if not remove (S, V )

8. D/C in (V,S) interval → if not remove (V, S)

9. if E < 0 in (V, V )/(V, V )4, → remove (V, V )/(V, V )4

10. if F < 0 in (V, V )4, → remove (V, V )4

11. Optional: Remove all models with χ2 > 3

12. Optional: Remove (V, V )/(V, V )4 if E, F < 0.001 respectively
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Every time one criterion could be applied or not fulfilled within the range of the error

bars, the corresponding model was cancelled from the list in Eq. (4.5).

In table 7 we have summarised our results for these different Monte Carlo data sets

where we give the number of the remaining models after going through the different

criteria. The first row e.g. means, that we started with 100 different data sets for

the (S, S) decay, applied our tests and after that, 100 (S, S) models remained, 0 of

(S, V ), 20 of (V, S), 100 of (F, F ) and so on. There were no data sets where only a

wrong model remained.

(S,S) (S,V) (V,S) (F,F) (V,V) (V,V4)

104 events:

(S,S): 100 0 20 100 100 100

(S,V): 0 99 0 1 100 99

(V,S): 0 0 99 99 100 98

(F,F): 0 5 0 100 99 99

(V,V): 0 66 0 78 100 100

105 events:

(S,S): 100 0 0 100 100 100

(S,V): 0 99 0 0 100 100

(V,S): 0 0 100 100 100 100

(F,F): 0 0 0 100 100 100

(V,V): 0 66 0 78 100 100

106 events:

(S,S): 100 0 0 100 100 100

(S,V): 0 98 0 0 99 100

(V,S): 0 0 100 100 100 100

(F,F): 0 0 0 100 100 100

(V,V): 0 10 0 61 100 100

Table 7: Number for the remaining models for 100 input models each where the various

criterions are applied using 3σ uncertainties on the coefficients. The masses are chosen

as mY = 100 ± 10 GeV and the mass difference (mX −mY ) = 900 ± 30 GeV . The bold

numbers are the correct model fits.

The obtained results can be understood as follows: (i) It is easier to fit a polynomial

which has low powers of ŝ by a higher order polynomial if there is smearing than vice

versa. (ii) The number of criterions depend on the decay mode, e.g. it is easier to

exclude (S, V ) where 3 criterions are at hand than (V, V ) where only one exists. (iii)

The modulus of the coefficients E and F is usually up to two orders of magnitude

smaller than the modulus of the other coefficients but the absolute uncertainty is

roughly the same for all coefficients. In particular the third item implies that it will
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(S,S) (S,V) (V,S) (F,F) (V,V) (V,V4)

104 events:

(S,S): 99/100 0/0 19/20 99/100 99/85 97/90

(S,V): 0/0 96/96 0/0 0/1 93/95 90/89

(V,S): 0/0 0/0 97/97 97/99 99/88 96/81

(F,F): 0/0 5/5 /00 98/100 98/89 97/87

(V,V): 0/0 46/66 0/0 31/78 95/95 92/90

105 events:

(S,S): 100/99 0/0 0/0 100/100 97/63 98/63

(S,V): 0/0 99/95 0/0 0/0 97/81 94/72

(V,S): 0/0 0/0 100/100 100/100 100/66 99/64

(F,F): 0/0 0/0 0/0 99/100 98/66 98/61

(V,V): 0/0 46/66 0/0 31/78 95/95 92/90

106 events:

(S,S): 100/100 0/0 0/0 100/99 100/14 96/23

(S,V): 0/0 95/98 0/0 0/0 93/54 90/33

(V,S): 0/0 0/0 99/100 99/100 98/17 98/28

(F,F): 0/0 0/0 0/0 100/100 98/22 97/25

(V,V): 0/0 0/10 0/0 0/61 93/100 97/64

Table 8: Same as Table 7 but taking into account either the optional criterion 11 ( exclude

χ2 > 3) or criterion 12 (small E,F ) corresponding to the first and second number given at

the various entries.

be rather difficult to exclude a positive E and F in practice if only one decay channel

is considered.

Additionally we have also looked at the optional criteria item 11 and 12 separately

and give the resulting numbers in Table 8. The first number of 99/100 (as e.g. in the

(S, S) case) denotes the number remaining after applying the χ2 criterion, the second

number the same with the small E,F criterion. The results are (i) the χ2 > 3 criterion

is most useful if the underlying decay is (V, V )/(V, V )4, since the polynomials with

a lower order have a large χ2. This is e.g. reflected in the (V, V ) decay with 10k

events, and the fitted (S, V ) and (F, F ) polynomials. Here the number of remaining

processes are reduced by applying the χ2 test from 66 ((S, V ), Table 7) to 46 (Table 8)

and for (F, F ) from 78 to 31. (ii) The criterion for small E, F works very good for

high statistics since the fit gives values close to 0. This is reflected in the last row

of Table 8, where the underlying process is (F, F ). After applying of the common

criterions, 100 of (V, V ) and 100 of (V, V )4 models remain (see Table 7). But after

applying additionally the criterion item 12 this number is reduced to 22 (V, V ) and

25 (V, V )4. However, the same argument does not remove any of the (V, V ) models,

if (V, V ) is the underlying process. For a smaller number of events, there are only
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a view coefficients E, F smaller then 0.001 so only a smaller number of models are

removed as e.g. in Table 8 for 10k events, 88/81 remaining (V, V )/(V, V )4 models

for the underlying (V, S) process.

Since our decision making strategy depends upon the correct error estimation of

the coefficients, we have independently checked that the Markov-Chain-Monte-Carlo

(MCMC) method for the data fitting which yields roughly the same errors on the

coefficients.

5. Conclusions

In this paper we have investigated three-body decays of the form X → f f̄Y where

X and Y are new particles and f are SM-fermions with the aim to determine the

spins of the new particles. Here we assumed that Y is a DM candidate and escapes

detection in a typical LHC detector.

We have studied in detail the differential width as a function of the invariant mass

of the SM-fermions for the case of heavy intermediate particles with mass mI and

expanded the width in powers of the ratio ǫ = mX/mI . It turns out that general

properties such as signs or various ratios of the resulting coefficients depend on the

spin assignments of X and Y . From this we have developed a strategy for the spin

identification discussing various cases and testing it on large samples of arbitrary

coupling assignments. Here it turns out that one is able to exclude several spin

assignments but one does not get necessarily find a unique solution once one has to

deal with noisy data.

Although we did not find a unique solution we are convinced that the proposed

method will be useful in practice for the following reasons: (i) We have only in-

vestigated one particular decay channel. However, in general several channels will

be open which can be combined. (ii) In the same spirit: we have only investigated

one decaying particle. In practice, e.g. if supersymmetry or extra dimensions are

realized in nature, several distinct new particles will be produced which eventually

have to decay into the lightest of the new ones if a parity like R-parity or KK-parity

is realized. Therefore, one will have several different possibilities to determine the

spin of the invisible particle Y . (iii) Our information can be combined with other

observables, e.g. with cross section information. However, here one most likely will

have to assume a certain representation to which a particular new particle belongs,

e.g. if it is an SU(3) triplet or octet.
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A. Analytic Results for the Coefficients

The coefficients of the differential decay widths are given below. We restrict ourselves

to the case of massless SM-fermions, implying that Z = A = 0 and, thus, the

differential widths read as

dΓ

dŝ
=

PS

(2π)3 256 mX

(
B + Cŝ+Dŝ2 + Eŝ3 + F ŝ4

)
(A.1)

A.1 Decays of new bosons

The coefficients are shown with all possible diagrams and vertices in Table 1. For the

definition of ǫ and the various τi see Eq. (2.2). We give the various orders separately,

e.g.

B =

4∑

j=2

Bjǫ
j (A.2)

For brevity, we only explicitely write out the higher orders for (S, S).

S → ffS:

B2 = 128ǫ2(τY − 1)2(g(r, s)n(l, s) + g(l, s)n(r, s))2

C2 = 128ǫ2(τY − 1)2(g(r, s)n(l, s) + g(l, s)n(r, s))2

D2 = 0 (A.3)

B3 = 64ǫ3τC(τY − 1)2c(s)(g(r, s)n(l, s) + g(l, s)n(r, s))(s(l) + s(r))

C3 = 64ǫ3τC(τY − 1)2c(s)(g(r, s)n(l, s) + g(l, s)n(r, s))(s(l) + s(r))

D3 = 0 (A.4)

B4 =
16

3
ǫ4(τY − 1)2

(
12g(r, s)2n(l, s)2(τY + 1)2 + 12g(l, s)2n(r, s)2(τY + 1)2

+24g(l, s)g(r, s)n(l, s)n(r, s)(τY + 1)2 + 3τ 2Cc(s)
2s(l)2 + 3τ 2Cc(s)

2s(r)2

+τ 2Y c(v)
2v(l)2 + 6τY c(v)

2v(l)2 + c(v)2v(l)2 + τ 2Y c(v)
2v(r)2

+6τY c(v)
2v(r)2 + c(v)2v(r)2

)

C4 = −
16

3
ǫ4(τY − 1)2

(
−48τY g(r, s)

2n(l, s)2 − 96τY g(l, s)g(r, s)n(r, s)n(l, s)

−48τY g(l, s)
2n(r, s)2 − 3τ 2Cc(s)

2s(l)2 − 3τ 2Cc(s)
2s(r)2 + 2τ 2Y c(v)

2v(l)2

+4τY c(v)
2v(l)2 + 2c(v)2v(l)2 + 2τ 2Y c(v)

2v(r)2

+4τY c(v)
2v(r)2 + 2c(v)2v(r)2

)

D4 = −
16

3
ǫ4(τY − 1)4

(
−
(
v(l)2 + v(r)2

)
c(v)2 + 12g(r, s)2n(l, s)2

+12g(l, s)2n(r, s)2 + 24g(l, s)g(r, s)n(l, s)n(r, s)
)

(A.5)

Moreover, we get Ej = 0 in all orders considered.
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S → ffV :

B2 =
64

3τ 2Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
ǫ2(τY − 1)2

(
25τ 2Y + 6τY + 1

)

C2 =
128

3τ 2Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
ǫ2(τY − 1)2

(
11τ 2Y − 2τY − 1

)

D2 =
64

3τ 2Y

(
g(r, s)2n(l, v)2 + g(l, s)2n(r, v)2

)
ǫ2(τY − 1)4 (A.6)

V → ffS:

B2 =
64

3

(
g(r, v)2n(l, s)2 + g(l, v)2n(r, s)2

)
ǫ2(τY − 1)2

(
τ 2Y + 6τY + 25

)

C2 = −
128

3

(
g(r, v)2n(l, s)2 + g(l, v)2n(r, s)2

)
ǫ2(τY − 1)2

(
τ 2Y + 2τY − 11

)

D2 =
64

3

(
g(r, v)2n(l, s)2 + g(l, v)2n(r, s)2

)
ǫ2(τY − 1)4 (A.7)

V → ffV :

B2 =
32

3τ 2Y
ǫ2(τY − 1)2

(
g(r, v)2

(
3τ 4Y + 16τ 3Y + 54τ 2Y + 16τY + 3

)
n(l, v)2

−g(l, v)g(r, v)n(r, v)
(
3τ 4Y + 20τ 3Y − 6τ 2Y + 20τY + 3

)
n(l, v)

+g(l, v)2n(r, v)2
(
3τ 4Y + 16τ 3Y + 54τ 2Y + 16τY + 3

))

C2 = −
32

3τ 2Y
ǫ2(τY − 1)2

(
g(r, v)2

(
5τ 4Y + 4τ 3Y − 46τ 2Y + 4τY + 5

)
n(l, v)2

−g(l, v)g(r, v)n(r, v)
(
7τ 4Y + 20τ 3Y + 34τ 2Y + 20τY + 7

)
n(l, v)

+g(l, v)2n(r, v)2
(
5τ 4Y + 4τ 3Y − 46τ 2Y + 4τY + 5

))

D2 =
32

3τ 2Y
ǫ2(τY − 1)4

(
g(r, v)2

(
τ 2Y − 6τY + 1

)
n(l, v)2

−g(l, v)g(r, v)n(r, v)
(
5τ 2Y + 6τY + 5

)
n(l, v)

+g(l, v)2n(r, v)2
(
τ 2Y − 6τY + 1

))

E2 =
32

3τ 2Y

(
g(r, v)2n(l, v)2 + g(l, v)g(r, v)n(r, v)n(l, v) + g(l, v)2n(r, v)2

)
ǫ2(τY − 1)6

(A.8)

A.2 Decays of new fermions

As noted before, in this case only the 4th order in ǫ contributes. We split the

various coefficients according to the different topologies considered, e.g. the scalar

contributions to B4 are

B4 = Bs +B′
s +Bs,m (A.9)

where

Bs : top. 1+2 with intermediate scalars
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B′
s : top. 3 with intermediate scalars

Bs,m : interference term of top. (1+2)+3 with intermediate scalars

For intermediate vector bosons the index v is used. For the interference terms be-

tween scalars and vector bosons the index (sv) is used in case of topologies 1+2,

(sv1) for the scalars of topology 1+2 and vector bosons of topology 3, (s1v) for the

scalars of topology 3 and vector bosons of topology 1+2. Moreover we find that the

interference vanishes if both, scalars and vector bosons stem from the third topology

because we have mf = 0 for the SM-fermions.

Intermediate scalars:

Bs =
64

3
(τY − 1)2

(
2
(
(τY (τY + 6) + 1)n(l, s)2 + (τY (τY + 3) + 1)n(r, s)2

)
g(l, s)2

−(τY (τY + 6) + 1)g(r, s)n(l, s)n(r, s)g(l, s) + 2g(r, s)2
(
(τY (τY + 3) + 1)n(l, s)2

+(τY (τY + 6) + 1)n(r, s)2
))

Cs = −
64

3
(τY − 1)2

(
−2g(l, s)g(r, s)n(l, s)n(r, s)(τY + 1)2

+g(r, s)2
(
((τY − 4)τY + 1)n(l, s)2 + ((τY − 10)τY + 1)n(r, s)2

)

+g(l, s)2
(
((τY − 10)τY + 1)n(l, s)2 + ((τY − 4)τY + 1)n(r, s)2

))

Ds = −
64

3
(τY − 1)4

((
n(l, s)2 + n(r, s)2

)
g(l, s)2

+g(r, s)n(l, s)n(r, s)g(l, s) + g(r, s)2
(
n(l, s)2 + n(r, s)2

))
(A.10)

B′
s = 32(τY − 1)2

(
(τY + 1)2d(l, s)2

+8τY d(r, s)d(l, s) + (τY + 1)2d(r, s)2
) (

s(l)2 + s(r)2
)

C ′
s = 128(τY − 1)2τY (d(l, s) + d(r, s))2

(
s(l)2 + s(r)2

)

D′
s = −32(τY − 1)4

(
d(l, s)2 + d(r, s)2

) (
s(l)2 + s(r)2

)
(A.11)

Bs,m = −32(τY − 1)2(g(r, s)n(l, s) + g(l, s)n(r, s))
(
d(r, s)

(
s(l)(τY + 1)2 + 4τY s(r)

)

+d(l, s)
(
s(r)(τY + 1)2 + 4τY s(l)

))

Cs,m = −128(τY − 1)2τY (g(r, s)n(l, s) + g(l, s)n(r, s))(d(l, s) + d(r, s))(s(l) + s(r))

Ds,m = 32(τY − 1)4(g(r, s)n(l, s) + g(l, s)n(r, s))(d(r, s)s(l) + d(l, s)s(r)) (A.12)

Intermediate vector bosons:

Bv =
256

3
(τY − 1)2

(
6g(l, v)g(r, v)n(l, v)n(r, v)(τY + 1)2

+g(l, v)2
(
2(τY (τY + 6) + 1)n(l, v)2 + 3(τY + 1)2n(r, v)2

)

+g(r, v)2
(
3(τY + 1)2n(l, v)2 + 2(τY (τY + 6) + 1)n(r, v)2

))
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Cv =
256

3
(τY − 1)2

((
12τY n(r, v)

2 − ((τY − 10)τY + 1)n(l, v)2
)
g(l, v)2

+24τY g(r, v)n(l, v)n(r, v)g(l, v) + g(r, v)2
(
12τY n(l, v)

2 − ((τY − 10)τY + 1)n(r, v)2
))

Dv = −
256

3
(τY − 1)4

((
n(l, v)2 + 3n(r, v)2

)
g(l, v)2

+6g(r, v)n(l, v)n(r, v)g(l, v) + g(r, v)2
(
3n(l, v)2 + n(r, v)2

))
(A.13)

B′
v =

256

3
(τY − 1)2

(
(τY (τY + 3) + 1)d(l, v)2 − 6τY d(r, v)d(l, v)

+(τY (τY + 3) + 1)d(r, v)2
) (

v(l)2 + v(r)2
)

C ′
v = −

128

3
(τY − 1)2

(
((τY − 4)τY + 1)d(l, v)2

+12τY d(r, v)d(l, v) + ((τY − 4)τY + 1)d(r, v)2
) (

v(l)2 + v(r)2
)

D′
v = −

128

3
(τY − 1)4

(
d(l, v)2 + d(r, v)2

) (
v(l)2 + v(r)2

)
(A.14)

Bv,m =
512

3
(τY − 1)2(τY (τY + 6) + 1)(d(l, v)− d(r, v))

(g(l, v)n(l, v)v(l)− g(r, v)n(r, v)v(r))

Cv,m = −
256

3
(τY − 1)2((τY − 10)τY + 1)(d(l, v)− d(r, v))

(g(l, v)n(l, v)v(l)− g(r, v)n(r, v)v(r))

Dv,m = −
256

3
(τY − 1)4(d(l, v)− d(r, v))(g(l, v)n(l, v)v(l)− g(r, v)n(r, v)v(r))

(A.15)

Interference terms between scalars and vector bosons:

Bsv = −
512

3
(τY − 1)2(n(l, v)(3τY g(l, s)g(r, v)n(r, s) + g(r, s)(3τY g(r, v)n(l, s)

+ (τY (τY + 6) + 1)g(l, v)n(r, s))) + ((τY (τY + 6) + 1)g(l, s)g(r, v)n(l, s)

+ 3τY g(l, v)(g(r, s)n(l, s) + g(l, s)n(r, s)))n(r, v))

Csv =
256

3
(τY − 1)2(n(l, v)(g(r, s)(((τY − 10)τY + 1)g(l, v)n(r, s)

− 6τY g(r, v)n(l, s))− 6τY g(l, s)g(r, v)n(r, s)) + (((τY − 10)τY + 1)g(l, s)g(r, v)n(l, s)

− 6τY g(l, v)(g(r, s)n(l, s) + g(l, s)n(r, s)))n(r, v))

Dsv =
256

3
(τY − 1)4(g(l, v)g(r, s)n(l, v)n(r, s) + g(l, s)g(r, v)n(l, s)n(r, v)) (A.16)

Bsv1 = −
256

3
(τY − 1)2(τY (τY + 6) + 1)(d(l, v)− d(r, v))

(g(r, s)n(r, s)v(l)− g(l, s)n(l, s)v(r))
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Csv1 =
128

3
(τY − 1)2((τY − 10)τY + 1)(d(l, v)− d(r, v))

(g(r, s)n(r, s)v(l)− g(l, s)n(l, s)v(r))

Dsv1 =
128

3
(τY − 1)4(d(l, v)− d(r, v))(g(r, s)n(r, s)v(l)− g(l, s)n(l, s)v(r)) (A.17)

Bs1v = 128(τY − 1)2(g(r, v)n(l, v) + g(l, v)n(r, v))
(
d(l, s)

(
s(l)(τY + 1)2 + 4τY s(r)

)

+d(r, s)
(
s(r)(τY + 1)2 + 4τY s(l)

))

Cs1v = 512(τY − 1)2τY (g(r, v)n(l, v) + g(l, v)n(r, v))

(d(l, s) + d(r, s))(s(l) + s(r))

Ds1v = −128(τY − 1)4(g(r, v)n(l, v) + g(l, v)n(r, v))(d(l, s)s(l) + d(r, s)s(r))

(A.18)
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