1,048 research outputs found

    Longitudinal Atomic Beam Spin Echo Experiments: A possible way to study Parity Violation in Hydrogen

    Full text link
    We discuss the propagation of hydrogen atoms in static electric and magnetic fields in a longitudinal atomic beam spin echo (lABSE) apparatus. Depending on the choice of the external fields the atoms may acquire both dynamical and geometrical quantum mechanical phases. As an example of the former, we show first in-beam spin rotation measurements on atomic hydrogen, which are in excellent agreement with theory. Additional calculations of the behaviour of the metastable 2S states of hydrogen reveal that the geometrical phases may exhibit the signature of parity-(P-)violation. This invites for possible future lABSE experiments, focusing on P-violating geometrical phases in the lightest of all atoms.Comment: 6 pages, 4 figure

    The flipped classroom in an undergraduate nutritional science course: A pilot study

    Get PDF

    Social representations of HIV/AIDS in five Central European and Eastern European countries: A multidimensional analysis

    Get PDF
    Cognitive processing models of risky sexual behaviour have proliferated in the two decades since the first reporting of HIV/AIDS, but far less attention has been paid to individual and group representations of the epidemic and the relationship between these representations and reported sexual behaviours. In this study, 494 business people and medics from Estonia, Georgia, Hungary, Poland and Russia sorted free associations around HIV/AIDS in a matrix completion task. Exploratory factor and multidimensional scaling analyses revealed two main dimensions (labelled ‘Sex’ and ‘Deadly disease’), with significant cultural and gender variations along both dimension scores. Possible explanations for these results are discussed in the light of growing concerns over the spread of the epidemic in this region

    The Role of Regulated mRNA Stability in Establishing Bicoid Morphogen Gradient in Drosophila Embryonic Development

    Get PDF
    The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner

    Effects of methods of descending stairs forwards versus backwards on knee joint force in patients with osteoarthritis of the knee: a clinical controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to investigate the kinetic characteristics of compensatory backward descending movement performed by patients with osteoarthritis of the knee.</p> <p>Methods</p> <p>Using a three-dimensional motion analysis system, we investigated lower extremity joint angles, joint moments, joint force of the support leg in forward and backward descending movements on stairs, and joint force of the leading leg at landing in 7 female patients with osteoarthritis of the knee.</p> <p>Results</p> <p>Compared with the forward descending movement, knee joint angle, joint moment and joint force of the support leg all decreased in the backward descending movement. Joint force of the leading leg at landing was also reduced in the backward descending movement. In addition, we confirmed that the center of body mass was mainly controlled by the knee and ankle joints in the forward descending movement, and by the hip joint in the backward descending movement.</p> <p>Conclusions</p> <p>Since it has been reported that knee flexion angle and extensor muscle strength are decreased in patients with osteoarthritis of the knee, we believe that backward descending movement is an effective method to use the hip joint to compensate forthese functional defects. In addition, due to the decreased knee joint force both in the leading and support legs in backward descending movement, the effectiveness of compensatory motion for pain control and knee joint protection was also suggested.</p

    Entrepreneurs’ age, institutions, and social value creation goals: a multi-country study

    Get PDF
    This study explores the relationship between an entrepreneur's age and his/her social value creation goals. Building on the lifespan developmental psychology literature and institutional theory, we hypothesize a U-shaped relationship between entrepreneurs’ age and their choice to create social value through their ventures, such that younger and older entrepreneurs create more social value with their businesses while middle age entrepreneurs are relatively more economically and less socially oriented with their ventures. We further hypothesize that the quality of a country’s formal institutions in terms of economic, social, and political freedom steepen the U-shaped relationship between entrepreneurs’ age and their choice to pursue social value creation as supportive institutional environments allow entrepreneurs to follow their age-based preferences. We confirm our predictions using multilevel mixed-effects linear regressions on a sample of over 15,000 entrepreneurs (aged between 18 and 64 years) in 45 countries from Global Entrepreneurship Monitor data. The findings are robust to several alternative specifications. Based on our findings, we discuss implications for theory and practice, and we propose future research directions

    DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of massive high throughput data via clustering algorithms is very important for elucidating gene functions in biological systems. However, traditional clustering methods have several drawbacks. Biclustering overcomes these limitations by grouping genes and samples simultaneously. It discovers subsets of genes that are co-expressed in certain samples. Recent studies showed that biclustering has a great potential in detecting marker genes that are associated with certain tissues or diseases. Several biclustering algorithms have been proposed. However, it is still a challenge to find biclusters that are significant based on biological validation measures. Besides that, there is a need for a biclustering algorithm that is capable of analyzing very large datasets in reasonable time.</p> <p>Results</p> <p>Here we present a fast biclustering algorithm called DeBi (Differentially Expressed BIclusters). The algorithm is based on a well known data mining approach called frequent itemset. It discovers maximum size homogeneous biclusters in which each gene is strongly associated with a subset of samples. We evaluate the performance of DeBi on a yeast dataset, on synthetic datasets and on human datasets.</p> <p>Conclusions</p> <p>We demonstrate that the DeBi algorithm provides functionally more coherent gene sets compared to standard clustering or biclustering algorithms using biological validation measures such as Gene Ontology term and Transcription Factor Binding Site enrichment. We show that DeBi is a computationally efficient and powerful tool in analyzing large datasets. The method is also applicable on multiple gene expression datasets coming from different labs or platforms.</p

    Three-dimensional printing of porous load-bearing bioceramic scaffolds

    Get PDF
    This article reports on the use of the binder jetting three-dimensional printing process combined with sintering to process bioceramic materials to form micro- and macroporous three-dimensional structures. Three different glass-ceramic formulations, apatite–wollastonite and two silicate-based glasses, have been processed using this route to create porous structures which have Young’s modulus equivalent to cortical bone and average bending strengths in the range 24–36 MPa. It is demonstrated that a range of macroporous geometries can be created with accuracies of ±0.25 mm over length scales up to 40 mm. Hot-stage microscopy is a valuable tool in the definition of processing parameters for the sintering step of the process. Overall, it is concluded that binder jetting followed by sintering offers a versatile process for the manufacture of load-bearing bioceramic components for bone replacement applications

    A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of rows coherent with groups of columns. This kind of clustering is called <it>biclustering</it>. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed.</p> <p>Methods</p> <p>We introduce <it>BiMine</it>, a new enumeration algorithm for biclustering of DNA microarray data. The proposed algorithm is based on three original features. First, <it>BiMine </it>relies on a new evaluation function called <it>Average Spearman's rho </it>(ASR). Second, <it>BiMine </it>uses a new tree structure, called <it>Bicluster Enumeration Tree </it>(BET), to represent the different biclusters discovered during the enumeration process. Third, to avoid the combinatorial explosion of the search tree, <it>BiMine </it>introduces a parametric rule that allows the enumeration process to cut tree branches that cannot lead to good biclusters.</p> <p>Results</p> <p>The performance of the proposed algorithm is assessed using both synthetic and real DNA microarray data. The experimental results show that <it>BiMine </it>competes well with several other biclustering methods. Moreover, we test the biological significance using a gene annotation web-tool to show that our proposed method is able to produce biologically relevant biclusters. The software is available upon request from the authors to academic users.</p
    corecore