22 research outputs found

    Design, formulation and sensory evaluation of a polyphenol-rich food placebo: an example of aronia juice for food intervention studies

    Get PDF
    Products suitable for use as controls in food interventions designed to demonstrate the role of minor components are largely lacking. In the present study, we aimed to develop a formulation to be used as a placebo in a clinical trial designed to assess the effects of aronia juice polyphenols on platelet function. Three formulations with the same nutrient composition as aronia juice were prepared by mixing various nutrients, artificial colours and flavours with water. The similarity of formulations to aronia juice in terms of taste, colour, smell and texture was assessed by six food panellists. The final placebo was tested for its impact on platelet function, biochemical and anthropometric parameters in a 4-week long study. No significant changes in platelet function, or in several cardiovascular and safety markers were recorded. Formulation suitable for use as a placebo for dietary intervention studies using aronia juice has been developed and demonstrated to be well tolerated in humans

    Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    Get PDF
    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds.In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy.The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy

    Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the effect of açai fruit pulp on risk factors for metabolic disorders in overweight subjects. The açaí palm (<it>Euterpe oleracea </it>Mart.), which is native to South America, produces a small, black-purple fruit which is edible. The fruit has recently become popular as a functional food due to its antioxidant potential. Although several studies have been conducted in vitro and with animals, little is known about the potential health benefits in humans aside from an increase in plasma anti-oxidant capacity. Metabolic syndrome is a condition which is defined by a cluster of risk factors for cardiovascular disease and/or type-2 diabetes. Preliminary studies indicate that a reduction in reactive oxygen species can assist in the normalization of the metabolic pathways involved in this syndrome.</p> <p>Methods</p> <p>This was an open label pilot study conducted with 10 overweight adults (BMI ≥ 25 kg/m<sup>2 </sup>and ≤ 30 kg/m<sup>2</sup>) who took 100 g açai pulp twice daily for 1 month. The study endpoints included levels of fasting plasma glucose, insulin, cholesterol, triglycerides, exhaled (breath) nitric oxide metabolites (eNO) and plasma levels of high sensitivity C-reactive protein (hs-CRP). The response of blood glucose, blood pressure and eNO to a standardized meal was determined at baseline and following the 30 day treatment.</p> <p>Results</p> <p>Compared to baseline, there were reductions in fasting glucose and insulin levels following the 30 day treatment (both p < 0.02). There was also a reduction in total cholesterol (p = 0.03), as well as borderline significant reductions in LDL-cholesterol and the ratio of total cholesterol to HDL-cholesterol (both p = 0.051). Compared to baseline, treatment with açai ameliorated the post-prandial increase in plasma glucose following the standardized meal, measured as the area under the curve (p = 0.047). There was no effect on blood pressure, hs-CRP or eNO.</p> <p>Conclusion</p> <p>In this uncontrolled pilot study, consumption of açai fruit pulp reduced levels of selected markers of metabolic disease risk in overweight adults, indicating that further studies are warranted.</p

    Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography

    Get PDF
    Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiNx layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD with uniform size and distribution. Scanning electron microscopy and atomic force microscopy measurements were conducted to investigate the QDs morphology. The InGaN/GaN QDs with density up to 8 × 1010 cm-2 are realized, which represents ultra-high dot density for highly uniform and well-controlled, nitride-based QDs, with QD diameter of approximately 22-25 nm. The photoluminescence (PL) studies indicated the importance of NH3 annealing and GaN spacer layer growth for improving the PL intensity of the SiNx-treated GaN surface, to achieve high optical-quality QDs applicable for photonics devices

    Chokeberry juice supplementation in type 2 diabetic patients - impact on health status

    No full text
    corecore