418 research outputs found
Numerical method for analysis of the correlation between ferrofluid optical transmission and its intrinsic properties
A numerical method to simulate the ferrofluid particle distribution evolution is presented. Also, the optical transmission of the distributions obtained is calculated by two numerical methods. The first one consists on a numerical propagation of an electromagnetic wave through the sample. The second one analyzes the aggregates’ mean length to obtain the optical transmission through a mixture law. As an illustration of the possibilities of the method developed, it is applied to analyze how ferrofluid optical transmission changes after magnetic field application depend on intrinsic properties of the colloid such as its nanoparticle concentration and surfactant repulsion represented by means of the final distances between consecutive particles forming chains. Changes in the attenuation factor of these samples show the trends expected from the Literature
Analysis of the optical transmission of a ferrofluid by an electromagnetic mixture law
Evolution of the optical transmission of a ferrofluid after magnetic field commutation is analyzed by means of an approach based on the so-called mixture laws: expressions which predict the effective permittivity of heterogeneous media as a function of their constituents' permittivities, their proportions and the way they are arranged. In particular, this work is based on a law proposed by Sihvola and Kong for the effective permittivity of a host substance with ellipsoidal inclusions. Ferrofluids are peculiar examples of this kind of media: with the solvent as host, the inclusions are nanoparticle agglomerates whose shapes become modified by magnetic field exposure. In this work, experimental optical transmission of a ferrofluid is compared with predictions based on Sihvola and Kong''s law. A remarkable coincidence is obtained both in the absence of magnetic field, without using any fitting parameter, and in the presence of magnetic field, employing the inclusions' average ellipticity as the fitting parameter. The results obtained for time dependent optical transmission of a ferrofluid after magnetic field switch on or off allow one to estimate how the average shape of the agglomerates evolves over time. On the other hand, mixture laws are proven to be an interesting alternative to scattering concepts to model the optical transmission changes experienced by ferrofluids once they are exposed to magnetic fields
Localized moving breathers in a 2-D hexagonal lattice
We show for the first time that highly localized in-plane breathers can
propagate in specific directions with minimal lateral spreading in a model 2-D
hexagonal non-linear lattice. The lattice is subject to an on-site potential in
addition to longitudinal nonlinear inter-particle interactions. This study
investigates the prediction that stable breather-like solitons could be formed
as a result of energetic scattering events in a given layered crystal and would
propagate in atomic-chain directions in certain atomic planes. This prediction
arose from a long-term study of previously unexplained dark lines in natural
crystals of muscovite mica.Comment: 6 pages, 2 Figs. Submitted to PR
Are Gauss-Legendre methods useful in molecular dynamics?
AbstractWe apply the two-stage Gauss-Legendre method to the numerical simulation of liquid argon, a typical problem in molecular dynamics. It is found that the scheme is less efficient than the Verlet/leapfrog method, standard in this sort of simulation
Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models
[EN] In this paper, we deal with computational uncertainty quantification for stochastic models with one random input parameter. The goal of the paper is twofold: First, to approximate the set of probability density functions of the solution stochastic process, and second, to show the capability of our theoretical findings to deal with some important epidemiological models. The approximations are constructed in terms of a polynomial evaluated at the random input parameter, by means of generalized polynomial chaos expansions and the stochastic Galerkin projection technique. The probability density function of the aforementioned univariate polynomial is computed via the random variable transformation method, by taking into account the domains where the polynomial is strictly monotone. The algebraic/exponential convergence of the Galerkin projections gives rapid convergence of these density functions. The examples are based on fundamental epidemiological models formulated via linear and nonlinear differential and difference equations, where one of the input parameters is assumed to be a random variable.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Chen-Charpentier, BM.; Cortés, J.; Jornet-Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry (Basel). 11(1):1-28. https://doi.org/10.3390/sym11010043S128111Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Bharucha-Reid, A. T. (1964). On the theory of random equations. Proceedings of Symposia in Applied Mathematics, 40-69. doi:10.1090/psapm/016/0189071Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826Chen-Charpentier, B.-M., Cortés, J.-C., Licea, J.-A., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2015). Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 109, 113-129. doi:10.1016/j.matcom.2014.09.002Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011Chen-Charpentier, B. M., & Stanescu, D. (2010). Epidemic models with random coefficients. Mathematical and Computer Modelling, 52(7-8), 1004-1010. doi:10.1016/j.mcm.2010.01.014Lucor, D., Su, C.-H., & Karniadakis, G. E. (2004). Generalized polynomial chaos and random oscillators. International Journal for Numerical Methods in Engineering, 60(3), 571-596. doi:10.1002/nme.976Santonja, F., & Chen-Charpentier, B. (2012). Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos. Computational and Mathematical Methods in Medicine, 2012, 1-8. doi:10.1155/2012/742086Stanescu, D., & Chen-Charpentier, B. M. (2009). Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 50(5-6), 885-895. doi:10.1016/j.mcm.2009.05.017Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315Villegas, M., Augustin, F., Gilg, A., Hmaidi, A., & Wever, U. (2012). Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties. Mathematics and Computers in Simulation, 82(5), 805-817. doi:10.1016/j.matcom.2011.12.001Xiu, D., & Em Karniadakis, G. (2002). Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Computer Methods in Applied Mechanics and Engineering, 191(43), 4927-4948. doi:10.1016/s0045-7825(02)00421-8Shi, W., & Zhang, C. (2012). Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Applied Numerical Mathematics, 62(12), 1954-1964. doi:10.1016/j.apnum.2012.08.007Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). On the convergence of adaptive gPC for non-linear random difference equations: Theoretical analysis and some practical recommendations. Journal of Nonlinear Sciences and Applications, 11(09), 1077-1084. doi:10.22436/jnsa.011.09.06Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088Hussein, A., & Selim, M. M. (2015). Solution of the stochastic generalized shallow-water wave equation using RVT technique. The European Physical Journal Plus, 130(12). doi:10.1140/epjp/i2015-15249-3Hussein, A., & Selim, M. M. (2013). A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 84-92. doi:10.1016/j.jqsrt.2013.03.018Xu, Z., Tipireddy, R., & Lin, G. (2016). Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. Applied Mathematical Modelling, 40(9-10), 5542-5559. doi:10.1016/j.apm.2015.12.041Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015El-Tawil, M. A. (2005). The approximate solutions of some stochastic differential equations using transformations. Applied Mathematics and Computation, 164(1), 167-178. doi:10.1016/j.amc.2004.04.062Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Solving second-order linear differential equations with random analytic coefficients about ordinary points: A full probabilistic solution by the first probability density function. Applied Mathematics and Computation, 331, 33-45. doi:10.1016/j.amc.2018.02.051Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 194(2), 217-231. doi:10.1016/j.mbs.2005.02.002Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7), 1161-1172. doi:10.1016/j.ress.2008.10.008Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964-979. doi:10.1016/j.ress.2007.04.002Chen-Charpentier, B. M., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2013). Some recommendations for applying gPC (generalized polynomial chaos) to modeling: An analysis through the Airy random differential equation. Applied Mathematics and Computation, 219(9), 4208-4218. doi:10.1016/j.amc.2012.11.007Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045Giraud, L., Langou, J., & Rozloznik, M. (2005). The loss of orthogonality in the Gram-Schmidt orthogonalization process. Computers & Mathematics with Applications, 50(7), 1069-1075. doi:10.1016/j.camwa.2005.08.009Marzouk, Y. M., Najm, H. N., & Rahn, L. A. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems. Journal of Computational Physics, 224(2), 560-586. doi:10.1016/j.jcp.2006.10.010Marzouk, Y., & Xiu, D. (2009). A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems. Communications in Computational Physics, 6(4), 826-847. doi:10.4208/cicp.2009.v6.p826SCOTT, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605-610. doi:10.1093/biomet/66.3.605National Spanish Health Survey (Encuesta Nacional de Salud de España, ENSE)http://pestadistico.inteligenciadegestion.msssi.es/publicoSNS/comun/ArbolNodos.asp
The Effect of Slamming Impact on Out-of-Autoclave Cured Prepregs of GFRP Composite Panels for Hulls
This paper proposes a methodology that employs an experimental apparatus that reproduces, in pre-impregnated and cured out-of-autoclave Glass Fiber Reinforced Polymer (GFRP) panels, the phenomenon of slamming or impact on the bottom of a high-speed boat during planing. The pressure limits in the simulation are defined by employing a finite element model (FEM) that evaluates the forces applied by the cam that hits the panels in the apparatus via microdeformations obtained in the simulation. The methodology requires that various impact series be performed at different energies and that the evolution of the damage be followed via immersion ultrasound inspection to quantify how the material behaves, in addition to evaluating the delamination process via penetrating dyes using UV radiation. Slamming impacts were performed on the order of 105, and the micromechanisms of interlaminar and intralaminar damage propagation were observed with scanning electron microscopy (SEM). The results were analyzed by correlating them with pressure, deformation, impact energy, and applied cycles, in addition to conducting compression experiments after impact to relate the material damage with the residual strength of the impacted panels
Cabezal del receptor del continuo con dos polarizaciones
Se describe el cabezal del nuevo receptor del IAR para observaciones del continuo con dos polarizaciones. El proyecto incluye el diseño de un alimentador de tipo escalar, sistemas para la obtención de las dos polarizaciones, osciladores de alta frecuencia, amplificadores de bajo ruido y etapas de frecuencia intermedia.Asociación Argentina de Astronomí
Polarímetro para observaciones en el continuo en 1420 MHz
Se describe el cabezal de un nuevo receptor capaz de detectar señales polarizadas, cuya construcción se está llevando a cabo en el Instituto Argentino de Radioastronomía. Se mencionan los criterios de diseño aplicados en las siguientes etapas del sistema como así también el estado actual de los trabajos.Asociación Argentina de Astronomí
- …