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Abstract 

We apply the two-stage Gauss-Legendre method to the numerical simulation of liquid argon, a typical problem in 
molecular dynamics. It is found that the scheme is less efficient than the Verlet/leapfrog method, standard in this sort of 
simulation. 
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1. Introduct ion 

In this note we study the advisability of using (implicit) Gauss-Legendre Runge-Kutta-NystriSm 
(RKN) methods in the integration of problems of the form 

d2q 
= g(q) ,  q ~ ~ D  (1) 

dt 

arising in molecular dynamics [1]. For a simulation involving N particles, D = 3N and q consists of 
N three-dimensional blocks; the ith block contains the three Cartesian coordinates xi, yi, zi of the 
ith particle. Furthermore, g = M-1J;, wheref is  a block vector whose ith block provides the force 
on the ith particle and M is a diagonal matrix of masses (the mass m~ of the ith particle appears in 
the (3i - 2)th, (3i - 1)th and 3ith diagonal entries). Thus, (1) represents Newton's second law for the 
motion of the particles. Alternatively, (1) may be written as first-order system after introducing the 
velocity vector r: 

dq dr 
d--[ = v, d t  = g(q)" (2) 
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In actual molecular dynamics situations, the integration of(l) or (2) is a very expensive task. This 
is due to the large value of N, to the complexity of the evaluation of each component of the force 
vector f (cf. Section 3) and to the long time-intervals of interest. Many molecular dynamics 
simulations are performed by the simple-minded Verlet algorithm [1] and it is of clear interest to 
investigate whether more sophisticated integrators may provide a better alternative. The Verlet 
algorithm is symplectic [10] and there is a growing evidence [8] that symplecticness is an attractive 
feature in molecular dynamics algorithms. For a detailed discussion of symplectic integration see 
[10]. Okunbor and Skeel have successfully applied a fourth-order symplectic RKN method 
suggested by Calvo and Sanz-Serna [2] to the simulation of liquid argon. For the same problem, 
Jane~i~ and Orel [6] have tested the two-stage, fourth-order (implicit) Gauss-Legendre method. 
The Gauss-Legendre formulae were shown to be symplectic by one of the present authors in [9]; 
an alternative proof may be seen in [3]. In view of the need for iteratively solving nonlinear 
equations, implicit formulae may seem of little appear in the numerical simulation of non-stiff 
molecular dynamics problems. However, when the nonlinear equations are solved by functional 
iteration in a parallel environment, it is possible to compute in parallel the various stages and this 
renders implicit formulae potentially interesting. Indeed, van der Howen and his coworkers, see, 
e.g., [5, 12] have suggested functional iteration in the Gauss-Legendre formulae as a useful way of 
obtaining parallel integrators. In this connection the Gauss-Legendre formulae have the advant- 
age of their optimally high-order relative to the number of stages. It should be emphasized that 
explicit, symplectic RKN formulae are inherently sequential [7], [10, Section 8.5] and therefore not 
specially suited for parallel environments. 

In this note we report on our experience with the two-stage Gauss-Legendre RKN method for 
the liquid argon problem. Our implementation is different from that in [6] and by presenting our 
result in the form of efficiency plots we are able to reach more definite conclusions than in [6]: it 
turns out that the Gauss-Legendre method are not useful for this test problem that only involves 
van der Waals forces. It is in principle possible that in problems involving bond forces the Gauss 
methods are of some interest. 

Setion 2 contains a brief discription of the methods tested and Section 3 presents the problem to 
be solved. The final Section 4 includes the numerical results and our conclusions. 

2. Numerical methods 

If we denote by qn and v n the numerical solution of (2) at time t n =  nat ,  then a step 
(qn, V n) ~ (qn+ 1, Vn+l) of (the position form of) Verlet's method is given by the three substeps 

qn+ l/2 _ ~  qn + 1 A t  v n, (3) 

V n + l  = V n -'F Atg(qn+l/2), (4) 

I I ~ n + !  qn+ l = qn+ l/2 + ~ At  (5) 
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If the value q"+ ~ at a particular grid point t" is not required for output, then it is advantageous to 
merge the last substep of the current step with the first substep of the next. This yields 

qn+ 3/2 = qn+ l/2 + Ati~n+ l 

a formula that, along with (4), gives the leapfrog version of the method. This involves approximat- 
ing v at the grid points t" and q halfway between gridpoints. We implement the leapfrog version and 
therefore, along the integration, we only perform the substep (3) (respectively (5)) if t" was an output 
point (respectively if t" ÷ 1 is going to be an output point). 

The two-stage Gauss-Legendre RKN method for (1) is the result of applying to (2) the standard 
two-stage Gauss-Legendre Runge-Kutta formula and eliminating the stage vectors for the velocity 
r, see, e.g., [10, Section 3.5]. When functional iteration is used to solve the implicit equations for the 
stage vectors, a step of the metod is as follows. Given initial approximations QtO)], Q~O] to the stage 
vectors, find, for i = 0, 1 . . . .  , v - 1, 

Q[li+ 1 ] =  qn 71_ At~ilVn + At2cqlg(Q~]) + At2~lzg(Qt~]), 

Qti+ 1] = q, 2 + Aty2 v" + At2ct21g(Q~ ]) + At2ct22g(Qt~]), 

where [10, Example 3.3] y~ = (3 - x/~)/6, Y2 = (3 + x/~)/6, ~11 = ~22 = 1/24, ~ 2  = (3 - 2x/~)/ 
24, ~21 = (3 + 2x/~)/24. After this, 

q .+l  = q. + Atr" + At2fllg(e~ v]) + At2flzg(et2v]), 

1 At (g(e[~]) + g(Qt~])), V n + l  = v n _ ] _ ~  - 

where fll = (3 + x/~)/12 and f12 = ( 3 -  x/~)/12. 
In all the experiments to be reported later, the initial guesses Q[O], QtO] were obtained by 

evaluating at t" + At?x and t" + At?2 the collocation polynomial for the preceding t"- ~ ~ t" step, 
see, e.g., [10, Section 3.3.2]. This way of initializing the stage is recommended in [4, p. 133]. In [6] 
an alternative initialization is employed. We also carried out experiments with the choice 
Q[O] = Q[O] = q,; but this alternative degraded the performance of the algorithm. 

In the experiments in Section 4, the number v of iterations per step was prescribed in advance. 
This, in tandem with our choice of initial guesses, effectively turns the formula into a two-step, 
explicit one, see [12] for a discussion. It is readily found that, for all values of v >/1, the implied 
explicit formula is consistent of order four. Per step, the number of evaluations of g is 2(v + 1). 
However, if two processors are available, say by linking two workstations with PVM, the 
evaluations at Q[q and Q[~] may be carried out in parallel and the cost is effectively of only v + 1 
evaluations per step. Note that with v = 1 this means order four at only two evaluations per step. 
On the other hand, note that using a fixed number of iterations per step destroys the symplecticness 
of the Gauss-Legendre formula; this is an example of what Skeel [11] calls a "symplectic crime". It 
is also possible to iterate to convergence, i.e., to iterate until two consecutive approximations 
(Q[I], Q[i]) and (Q[i+ 1],Q[i+ 1]) are found that differ in less than a small prescribed tolerance. An 
iteration-to-convergence algorithm was also implemented; its efficiency was found not to differ 
noticeably from that of the fixed-v algorithm. With stringent (resp. lax) tolerance the performance 
was similar to that obtained by giving to v a fixed, large (resp. small) value. 
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3. The problem 

Consider N particles with masses m/, positions r~ = (xi, y~, z~) and velocities r~ = dr~/dt attracting 
each other with a potential V(r). The force]]j exerted on the ith particle by the j th  particle is then 

r~ - rj 
f i j  = - -  V r i V ( J [ r i  - rjl[) = V'(llri - r j l l ) ] l r i_  rj[i 

and the equations of motion are 

d 2 r i  
mi--d-fT = Z fJ"  (6) 

j # i  

The total energy H, obtained by summing the kinetic and potential contributions, 

H = K + V = ~ ] '  m~llv~ II 2 + ~ V([[ri - rj{[) 
i i , j  

i # j  

is a conserved quantity for the system (6). The temperature T is a measure of the average kinetic 
energy per particle and is given by 

~2 (N - 1 )kT  = K; (7) 

k is the Boltzmann constant, 1.380658 J/K. The temperature is not a conserved quantity along the 
integration because K and V are not individually conserved. 

For liquid argon a Lennard-Jones  potential [1], 

V ( r ,  = 

is suitable with e = 1.65324× 10-21J and a = 3.405 × 10-1°m. The mass of the argon atom is 
6.64 × 10-26kg. 

We performed the numerical integration of (6) in nondimensional form. The nondimensional 
time t* and the nondimensional distance r* are defined by 

r = ar*, t = / ruff2 t*, 
V 48e 

and the nondimensional equations of motion read 

d2r* ( 1 1 / 
dt ~ = E "*l 1, - j ~ i  I I r * - t j  211r* r.,llsj / (r* - r*). 

Note that the computat ion of each component  of the force requires a cost that grows like O(N)  so 
that the cost of evaluating g in (1) is O (N 2). It is then reasonable to measure the cost of the different 
integrators by the number  of g evaluations they need. 

To avoid boundaries, we assume that the liquid fills the whole three-dimensional space. In order 
to have a system with a finite number of degrees of freedom, we impose periodicity as follows. 
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We consider a box 

= { 0 < ~ x * ~ < L * , 0 < ~ y * < ~ L * , 0 ~ < z * ~ < L * } ,  L * = 6 . 7 5  

containing 256 atoms of argon and imagine that this box is replicated periodically, with period L* 
in the x*,y*,z* directions. Thus, the index i in (6) runs from 1 to N = 256. However, the 
summation indexj  in (6) still takes infinitely many values. Each of the N atoms in the primary box 

is subject to forces not only from the other N - 1 atoms in ~ but also by all atoms in the periodic 
copies of ~ .  In order to deal with finite sums we use the "minimum image" [1] convention. Given 
two atoms i and j in ~ ,  we assume that, amongst the infinitely many periodic copies of j  including 
j itself, only that closest to i exerts force on i. This truncation has little effect on the equations of 
motion because the Lennard-Jones  forces are virtually zero at long distances. A similar truncation 
is performed in the computat ion of the potential energy. 

The above values of N and L* correspond to a density of 1.4 g c m -  3. We set the temperature of 
the simulation at 86.4956K. To get an initial condition compatible with that temperature, 
a preliminary integration was carried out by the Verlet algorithm. For  this preliminary run the 
atoms are initially located at the nodes of a face-centered cubic lattice and given small random 
initial velocities. At constant time intervals, all the velocities ~i are rescaled and become/~vi, where 
/~ is a scalar dynamically chosen for (7) to hold with T equal to the target temperature. Each 
rescaling may be seen as a sudden burst of heat given to the system so as to bring it to the target 
temperature. After each of these such sudden changes the temperature does not remain constant 
because part of the kinetic energy is transformed into potential energy. Nevertheless, in successive 
rescalings the scaling factor/~ approaches 1, so that after a while no further rescaling is necessary. 
This produces the initial state to be used in the simulations. 

4. Results and conclusions 

The liquid argon was simulated for a time interval 0 ~< t* ~< 65.536. This represents 20.31 ps in 
physical time t. The nondimensional  time-step was chosen from the sequence 0.256, 0.128, 0.064, ... 
With the largest time-step 0.256, 256 steps are needed to span the time-interval. The step 
At* = 0.064 corresponds to 0.02 ps of physical time and may be considered as a typical step to be 
used with the Verlet algorithm. 

We have measured the standard deviation of the errors in the total energy H at 64 equally spaced 
points along the time interval. This is a s tandard test for molecular dynamics methods, which are 
typically used to obtain estimates of macroscopic magnitudes rather than to provide a detailed 
description of the evolution of each individual atom. Fig. 1 is an efficiency plot; the vertical axis 
corresponds to the relative energy error and the horizontal axis is work as measured by the number  
of g evaluations. This figure refers to an idealized parallel environment where the evaluation of 
g(Qtxil) and g(Q~l) may be performed in the same computer  time as the evaluation of one of them 
and is therefore counted as a single force evaluation. The following runs are reported. 
• The Verlet method ran with At = 0.128, . . . ,  0.008. For  At* = 0.256 the scheme is unstable. These 

runs are displayed by crosses joined by a solid line. 
• The Gauss method with v = 1 ran with At* = 0.128, ... ,0.032 ( × signs). The choice At* = 0.256 

lead to instability. 
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Fig. 1. Efficiency in a parallel setting. 
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Fig. 2. Efficiency in a sequential setting. 
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• The Gauss method with v = 2 ran with At* = 0.256 . . . .  ,0.032 (circles). 
• The Gauss method with v = 3 ran with A t * =  0.128 and A t * =  0.064 (stars). The choice 

At* = 0.256 leads to instability. 
The higher rate of convergence of the Gauss integrators is clearly seen in the figure. Note also 

that, in terms of efficiency, the choice v = 2 improves on the choice v = 1, but v = 3 is no better 
than v = 2. Experiments not given in the figure further reveal that the efficiency for v = 4 is the 
same as that for v = 2 or 3. When comparing the Verlet and the Gauss runs it is apparent  that the 
Verlet methods is more efficient than the Gauss methods except if one insists in energy errors too 
small to be of practical interest. This conclusion is at variance with that in 1-6] where it is claimed 
that "the proposed implicit Runge-Kut t a  method should become the choice for molecular 
dynamics integrations". Probably, the discrepancy with 1-6] is created because in that paper the 
reader's attention is directed to a comparison between errors of different algorithms operating with 
a given At*; here we compare errors per unit of work. 

Fig. 2 is identical to Fig. 1 except for the fact that it refers to a sequential computer  environment 
where the computat ion of g(Qt~ 1) and g(Q~J) requires twice as much time as the evaluation of one of 
them. As expected, the advantages of the Verlet method are in this case still are more marked. 

Acknowledgements 

The research of the first two authors has been supported by project DGICYT PB92-254. This 
work was done while J.C. Diaz was visiting the University of Valladolid as an Iberdrola Visiting 
Professor. We are thankful to Prof. R.D. Skeel for reading the manuscript. 

References 

I-1] M.P. Allen and D.J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987). 
1-2] M.P. Calvo and J.M. Sanz-Serna, The development of variable step symplectic integrators, with application to the 

two-body problem, SIAM J. Sci. Comput. 14 (1993) 936-952. 
[3] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems (Springer, 

Berlin, 2nd ed., 1993). 
I-4] E. Hairer and G. Wanner, Solving Differential Equations II, Stiff and Differential-Algebraic Problems (Springer, 

Berlin, 1991). 
[5] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize 

control, J. Comput. Appl. Math. 29 (1990) 111-127. 
[6] D. Jane~i~ and B. Orel, Implicit Runge-Kutta method for molecular dynamics integration, J. Chem. Inform. 

Comput. Sci. 33 (1993) 252-257. 
1-7] D.I. Okunbor and R.D. Skeel, Explicit canonical methods for Hamiltonian systems, Math. Comput. 59 (1992) 

439455. 
[8] D.I. Okunbor and R.D. Skeel, Canonical numerical methods for molecular dynamics simulations, J. Comput. Chem. 

15 (1994) 72-79. 
[9] J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT 28 (1988) 877-883. 

rl0] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems (Chapman and Hall, London, 1994). 
I-11] R.D. Skeel, J.J. Biesiadecki and D. Okunbor, Symplectic integration for macromolecular dynamics, in: Proc. Internat. 

Conf. Computation of Differential Equations and Dynamical Systems (World Scientific, Singapore, 1993) 49--61. 
1-12] B.P. Sommeijer, Explicit, high-order Runge-Kutta-Nystr6m methods for parallel computers, Appl. Numer. Math. 

13 (1993) 221-240. 


