189 research outputs found

    Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Get PDF
    Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species

    Vertical Confinement and Evolution of Reentrant Insulating Transition in the Fractional Quantum Hall Regime

    Full text link
    We have observed an anomalous shift of the high field reentrant insulating phases in a two-dimensional electron system (2DES) tightly confined within a narrow GaAs/AlGaAs quantum well. Instead of the well-known transitions into the high field insulating states centered around Μ=1/5\nu = 1/5, the 2DES confined within an 80\AA-wide quantum well exhibits the transition at Μ=1/3\nu = 1/3. Comparably large quantum lifetime of the 2DES in narrow well discounts the effect of disorder and points to confinement as the primary driving force behind the evolution of the reentrant transition.Comment: 5 pages, 4 figure

    Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass

    Full text link
    Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T pulsed magnetic fields. The CF effective mass is found to increase approximately linearly with the effective field B∗B^*, in agreement with our earlier work at lower fields. For a B∗B^* of 14 T it reaches 1.6me1.6m_e, over 20 times the band edge electron mass. Data from all fractions are unified by the single parameter B∗B^* for all the samples studied over a wide range of electron densities. The energy gap is found to increase like B∗\sqrt{B^*} at high fields.Comment: Has final table, will LaTeX without error

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Constraining the mass of dark photons and axion-like particles through black-hole superradiance

    Get PDF
    Ultralight bosons and axion-like particles appear naturally in different scenarios and could solve some long-standing puzzles. Their detection is challenging, and all direct methods hinge on unknown couplings to the Standard Model of particle physics. However, the universal coupling to gravity provides model-independent signatures for these fields. We explore here the superradiant instability of spinning black holes triggered in the presence of such fields. The instability taps angular momentum from and limits the maximum spin of astrophysical black holes. We compute, for the first time, the spectrum of the most unstable modes of a massive vector (Proca) field for generic black-hole spin and Proca mass. The observed stability of the inner disk of stellar-mass black holes can be used to derive \emph{direct} constraints on the mass of dark photons in the mass range 10−13 eVâ‰ČmVâ‰Č3×10−12 eV 10^{-13}\,{\rm eV}\lesssim m_V \lesssim 3\times 10^{-12}\,{\rm eV}. By including also higher azimuthal modes, similar constraints apply to axion-like particles in the mass range 6×10−13 eVâ‰ČmALPâ‰Č10−11 eV6\times10^{-13}\,{\rm eV}\lesssim m_{\rm ALP} \lesssim 10^{-11}\, {\rm eV}. Likewise, mass and spin distributions of supermassive BHs --~as measured through continuum fitting, Kα\alpha iron line, or with the future space-based gravitational-wave detector LISA~-- imply indirect bounds in the mass range approximately 10−19 eVâ‰ČmV,mALPâ‰Č10−13 eV10^{-19}\,{\rm eV}\lesssim m_V, m_{\rm ALP} \lesssim 10^{-13}\, {\rm eV}, for both axion-like particles and dark photons. Overall, superradiance allows to explore a region of approximately 88 orders of magnitude in the mass of ultralight bosons

    Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP

    Get PDF
    A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV
    • 

    corecore