51,689 research outputs found
Ultracold atoms in optical lattices with random on-site interactions
We consider the physics of lattice bosons affected by disordered on-site
interparticle interactions. Characteristic qualitative changes in the zero
temperature phase diagram are observed when compared to the case of randomness
in the chemical potential. The Mott-insulating regions shrink and eventually
vanish for any finite disorder strength beyond a sufficiently large filling
factor. Furthermore, at low values of the chemical potential both the
superfluid and Mott insulator are stable towards formation of a Bose glass
leading to a possibly non-trivial tricritical point. We discuss feasible
experimental realizations of our scenario in the context of ultracold atoms on
optical lattices.Comment: 4 pages, 3 eps figure
Manipulation of the dynamics of many-body systems via quantum control methods
We investigate how dynamical decoupling methods may be used to manipulate the
time evolution of quantum many-body systems. These methods consist of sequences
of external control operations designed to induce a desired dynamics. The
systems considered for the analysis are one-dimensional spin-1/2 models, which,
according to the parameters of the Hamiltonian, may be in the integrable or
non-integrable limits, and in the gapped or gapless phases. We show that an
appropriate control sequence may lead a chaotic chain to evolve as an
integrable chain and a system in the gapless phase to behave as a system in the
gapped phase. A key ingredient for the control schemes developed here is the
possibility to use, in the same sequence, different time intervals between
control operations.Comment: 10 pages, 3 figure
Interface States in Carbon Nanotube Junctions: Rolling up graphene
We study the origin of interface states in carbon nanotube intramolecular
junctions between achiral tubes. By applying the Born-von Karman boundary
condition to an interface between armchair- and zigzag-terminated graphene
layers, we are able to explain their number and energies. We show that these
interface states, costumarily attributed to the presence of topological
defects, are actually related to zigzag edge states, as those of graphene
zigzag nanoribbons. Spatial localization of interface states is seen to vary
greatly, and may extend appreciably into either side of the junction. Our
results give an alternative explanation to the unusual decay length measured
for interface states of semiconductor nanotube junctions, and could be further
tested by local probe spectroscopies
Gate-controlled conductance through bilayer graphene ribbons
We study the conductance of a biased bilayer graphene flake with monolayer
nanoribbon contacts. We find that the transmission through the bilayer ribbon
strongly depends on the applied bias between the two layers and on the relative
position of the monolayer contacts. Besides the opening of an energy gap on the
bilayer, the bias allows to tune the electronic density on the bilayer flake,
making possible the control of the electronic transmission by an external
parameter.Comment: 5 pages, 5 figures include
Electronic transport through bilayer graphene flakes
We investigate the electronic transport properties of a bilayer graphene
flake contacted by two monolayer nanoribbons. Such a finite-size bilayer flake
can be built by overlapping two semiinfinite ribbons or by depositing a
monolayer flake onto an infinite nanoribbon. These two structures have a
complementary behavior, that we study and analyze by means of a tight-binding
method and a continuum Dirac model. We have found that for certain energy
ranges and geometries, the conductance of these systems oscillates markedly
between zero and the maximum value of the conductance, allowing for the design
of electromechanical switches. Our understanding of the electronic transmission
through bilayer flakes may provide a way to measure the interlayer hopping in
bilayer graphene.Comment: 11 pages, 8 figure
Evolutionary Prisoner's Dilemma on heterogeneous Newman-Watts small-world network
We focus on the heterogeneity of social networks and its role to the
emergence of prevailing cooperation and sustaining cooperators. The social
networks are representative of the interaction relationships between players
and their encounters in each round of games. We study an evolutionary
Prisoner's Dilemma game on a variant of Watts-Strogatz small-world network,
whose heterogeneity can be tuned by a parameter. It is found that optimal
cooperation level exists at some intermediate topological heterogeneity for
different temptations to defect. Moreover, neither the most heterogeneous case
nor the most homogeneous one would favor the cooperators. At intermediate
heterogeneity in degree sequences, cooperators could resist the invasion of
defectors for large temptation to defect.Comment: Updated versio
Atomic quantum gases in Kagom\'e lattices
We demonstrate the possibility of creating and controlling an ideal and
\textit{trimerized} optical Kagom\'e lattice, and study the low temperature
physics of various atomic gases in such lattices. In the trimerized Kagom\'e
lattice, a Bose gas exhibits a Mott transition with fractional filling factors,
whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum
magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half filling
for both components represents a frustrated quantum antiferromagnet with a
resonating-valence-bond ground state and quantum spin liquid behavior dominated
by continuous spectrum of singlet and triplet excitations. We discuss the
method of preparing and observing such quantum spin liquid employing molecular
Bose condensates.Comment: 4 pages, 1 figure. Missing affiliations adde
- …