22,887 research outputs found

    A New Form of Path Integral for the Coherent States Representation and its Semiclassical Limit

    Full text link
    The overcompleteness of the coherent states basis leads to a multiplicity of representations of Feynman's path integral. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. Two such semiclassical formulas were derived in \cite{Bar01} for the two corresponding path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}. Each of these formulas involve trajectories governed by a different classical representation of the Hamiltonian operator: the P representation in one case and the Q representation in other. In this paper we construct a third representation of the path integral whose semiclassical limit involves directly the Weyl representation of the Hamiltonian operator, i.e., the classical Hamiltonian itself.Comment: 16 pages, no figure

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page

    Tecnologia para biodegradação da casca de coco sem gerar outros resíduos.

    Get PDF
    bitstream/CPATC/19770/1/f_07_2007.pdfExiste o documento impresso

    Deformation method for generalized Abelian Higgs-Chern-Simons models

    Get PDF
    We present an extension of the deformation method applied to self-dual solutions of generalized Abelian Higgs-Chern-Simons models. Starting from a model defined by a potential V(ϕ)V(| \phi |) and a non-canonical kinetic term ω(ϕ)Dμϕ2\omega(| \phi |) | D_{\mu}\phi |^2 whose analytical domain wall solutions are known, we show that this method allows to obtain an uncountable number of new analytical solutions of new models defined by other functions V~\widetilde{V} and ω~\widetilde{\omega}. We present some examples of deformation functions leading to new families of models and their associated analytic solutions.Comment: 6 pages, 10 figure

    Analytical BPS Maxwell-Higgs vortices

    Get PDF
    We have established a prescription for the calculation of analytical vortex solutions in the context of generalized Maxwell-Higgs models whose overall dynamics is controlled by two positive functions of the scalar field. We have also determined a natural constraint between these functions and the Higgs potential allowing the existence of axially symmetric Bogomol'nyi-Prasad-Sommerfield (BPS) solutions possessing finite energy. Furthermore, when the generalizing functions are chosen suitably, the nonstandard BPS equations can be solved exactly. We have studied some examples, comparing them with the usual Abrikosov-Nielsen-Olesen (ANO) solution. The overall conclusion is that the analytical self-dual vortices are well-behaved in all relevant sectors, strongly supporting the generalized models they belong themselves. In particular, our results mimic well-known properties of the usual (numerical) configurations, as localized energy density, while contributing to the understanding of topological solitons and their description by means of analytical methods.Comment: 8 pages, 4 figure

    Tecnologia para biodegradação da casca de coco seco e de outros resíduos do coqueiro.

    Get PDF
    bitstream/item/158629/1/ct-46.pd

    Examining punishment at different explanatory levels.

    Get PDF
    Experimental studies on punishment have sometimes been over-interpreted not only for the reasons Guala lists, but also because of a frequent conflation of proximate and ultimate explanatory levels that Guala's review perpetuates. Moreover, for future analyses we may need a clearer classification of different kinds of punishment

    Reputation based on punishment rather than generosity allows for evolution of cooperation in sizable groups

    Get PDF
    Cooperation among unrelated individuals can arise if decisions to help others can be based on reputation. While working for dyadic interactions, reputation-use in social dilemmas involving many individuals (e.g. public goods games) becomes increasingly difficult as groups become larger and errors more frequent. Reputation is therefore believed to have played a minor role for the evolution of cooperation in collective action dilemmas such as those faced by early humans. Here, we show in computer simulations that a reputation system based on punitive actions can overcome these problems and, compared to reputation system based on generous actions, (i) is more likely to lead to the evolution of cooperation in sizable groups, (ii) more effectively sustains cooperation within larger groups, and (iii) is more robust to errors in reputation assessment. Punishment and punishment reputation could therefore have played crucial roles in the evolution of cooperation within larger groups of humans
    corecore