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We have established a prescription for the calculation of analytical vortex solutions in the context of generalized Maxwell-Higgs
models whose overall dynamics is controlled by two positive functions of the scalar field, namely, 𝑓 (

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨) and 𝑤 (

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨). We have also

determined a natural constraint between these functions and theHiggs potential𝑈 (
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨), allowing the existence of axially symmetric

Bogomol’nyi-Prasad-Sommerfield (BPS) solutions possessing finite energy. Furthermore, when the generalizing functions are
chosen suitably, the nonstandard BPS equations can be solved exactly. We have studied some examples, comparing them with the
usual Abrikosov-Nielsen-Olesen (ANO) solution. The overall conclusion is that the analytical self-dual vortices are well-behaved
in all relevant sectors, strongly supporting the consistency of the respective generalized models. In particular, our results mimic
well-known properties of the usual (numerical) configurations, as localized energy density, while contributing to the understanding
of topological solitons and their description by means of analytical methods.

1. Introduction

In the context of classical field theories, structures possessing
topologically nontrivial profiles are usually described as the
static solutions of the Euler-Lagrange equations in the pres-
ence of finite energy boundary conditions [1]. In some special
cases, by requiring the minimization of the corresponding
energy functional, such structures can also be described via
a set of first-order differential equations also known as BPS
equations [2, 3], which provide genuine solutions of the
Euler-Lagrange ones.

The kink is a one-dimensional topological object arising
within the simplest field model containing only a single
real scalar field [4]. Regarding higher-dimensional scenarios,
the vortex stands for a planar configuration solving some
radially symmetric Abelian-Higgs models [5, 6], whilst the
magnetic monopole is a three-dimensional spherically sym-
metric object appearing in the non-Abelian-Higgs case [7, 8].
All these solutions possess the minimum energy possible,
being stable against decaying into their respective mesons.

Moreover, it is well known that, in order to give rise to
topological fields, the corresponding model must allow for
the spontaneous symmetry breaking mechanism, with its
potential term presenting at least two asymmetric vacua,
since topological defects are known to be formed during
symmetry breaking phase transitions.

During the last years, a new kind of topologically non-
trivial objects has been intensively studied in connectionwith
fieldmodels endowedwith noncanonical kinetic termswhich
change the dynamics of the overall system in a nonusual way.
It is worthwhile to point out that the motivation regarding
exotic dynamics arises in a rather natural way in the context
of the string theories. In particular, given some special
constraints, field models possessing nonusual dynamics also
support minimum energy solutions; see, for instance, [9–17].
Moreover, except for their nontrivial nature, these solutions
behave in the same general way as their standard counterparts
do. On the other hand, exotic kinetic terms also induce
slightly variations on the shape of the corresponding field
solutions, changing their amplitudes and/or characteristic
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lengths. Nonstandard field models are defined by introduc-
ing generalizing functions on usual field models. Detailed
investigations regarding topological defects in the context of
these models are found in [18–35]. Many authors have also
studied interesting applications of these new solutions within
several different scenarios, specially involving the accelerated
inflationary phase of the universe [36] via the so-called 𝑘-
essence models [37], strong gravitational waves [38], tachyon
matter [39], dark matter [40], and others [41–43].

Besides the variations on the defect amplitudes and char-
acteristic lengths, these generalizing functions also provide
new features for some models, as, for example, self-dual
analytical solutions which certainly enriches our understand-
ing about integrable systems. Recently, self-dual analytical
monopoles were achieved in [44] in the context of some
generalized Yang-Mill models [45]. These new analytical
solutions, unattainable in the absence of the modifying
functions, were divided into two different classes according
to their capability of recovering (or not) the standard ’t
Hooft-Polyakov result. By following the purpose of achieving
analytical solutions for topological defects, the present paper
aims at investigating the existence of analytical BPS vortex
solutions within the framework of the generalized Maxwell-
Higgs model [46].

The letter is organized as follows. In Section 2, we review
some important details regarding the generalized Maxwell-
Higgs scenario. Section 3 is devoted to describing the pre-
scription implemented to find the analytical BPS solutions
of the generalized model. The consistence of our approach
is verified by investigating some explicit examples. In the
sequel, the new solutions are compared to the ANO profiles,
allowing the identification of themain properties acquired by
them. Finally, in Section 4, we present our final remarks and
conclusions.

2. The Nonstandard Model

We begin by reviewing the (1 + 2)-dimensional generalized
Maxwell-Higgs model introduced in [46], whose Lagrangian
density is

L = −
𝑓2 (

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨)

4
𝐹
𝜇]𝐹
𝜇] + 𝑤 (

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨󵄨𝐷𝜇𝜙

󵄨󵄨󵄨󵄨󵄨
2

− 𝑈 (
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨) ,

(1)

where 𝐹
𝜇] = 𝜕

𝜇
𝐴] − 𝜕]𝐴𝜇 is the usual field strength

tensor and 𝐷
𝜇
𝜙 = 𝜕

𝜇
𝜙 − 𝑖𝑒𝐴

𝜇
𝜙 stands for the covariant

derivative. Moreover, 𝑓2(|𝜙|) and 𝑤(|𝜙|) are positive func-
tions which change the dynamics of the overall model, being
called dielectric functions because they mimic some effective
electrodynamics in continuous media, as already mentioned
in the literature. So far, the possibility of such generalizing
functions to provide exactly solvable models for vortex
configurations was not explored, being the main motivation
of this paper. Here, for simplicity, all fields, coordinates, and
parameters are supposed to be dimensionless.

The corresponding Euler-Lagrange equation for the
gauge field is

𝜕] (𝑓
2𝐹]𝜇) = 𝐽𝜇, (2)

where 𝐽𝜇 = 𝑖𝑒𝑤(𝜙𝐷𝜇𝜙 − 𝜙𝐷𝜇𝜙) is the generalized current
vector, which is also conserved (𝜕

𝜇
𝐽𝜇 = 0). The stationary

Gauss law then reads

𝜕
𝑘
(𝑓2𝜕
𝑘
𝐴
0
) = 2𝑒2𝑤𝐴

0

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
2

, (3)

being trivially verified by 𝐴
0
= 0, revealing that the static

configurations of the generalized model (1) generate no
electric field.

Stationary Ampère’s law can be written as (already using
𝐴
0
= 0)

𝜖
𝑖𝑘
𝜕
𝑘
(𝑓2𝐵) = 𝐽

𝑖
, (4)

whilst the equation controlling the Higgs field is

𝑤𝐷
𝑘
𝐷
𝑘
𝜙 + (𝜕

𝑘
𝑤)𝐷
𝑘
𝜙 −

󵄨󵄨󵄨󵄨𝐷𝑘𝜙
󵄨󵄨󵄨󵄨
2 𝜕𝑤

𝜕𝜙
= 𝐵2𝑓

𝜕𝑓

𝜕𝜙
+
𝜕𝑈

𝜕𝜙
. (5)

Here, 𝐵 = 𝜖
𝑗𝑘
𝜕
𝑗
𝐴
𝑘
represents the magnetic field.

In order to obtain the first-order self-dual equations of the
model (1), we start from the expression for the generalized
total energy; that is,

𝐸 = ∫(
1

2
𝑓2𝐵2 + 𝑤

󵄨󵄨󵄨󵄨𝐷𝑘𝜙
󵄨󵄨󵄨󵄨
2

+ 𝑈)𝑑2𝑥, (6)

which can also be written in the form

𝐸 = ∫(
1

2
(𝑓𝐵 ∓ √2𝑈)

2

+ 𝑤
󵄨󵄨󵄨󵄨𝐷±𝜙

󵄨󵄨󵄨󵄨
2

± 𝐵 (𝑓√2𝑈)

± 𝑖𝑤𝜖
𝑖𝑘
(𝜕
𝑖
𝜙) (𝜕
𝑘
𝜙) ∓ 𝑒𝑤𝜖

𝑖𝑘
𝐴
𝑘
𝜕
𝑖

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
2

)𝑑2𝑥.

(7)

The energy is minimized by imposing

𝐷
±
𝜙 = 0, 𝐵 = ±

√2𝑈

𝑓
, (8)

which are the generalized self-dual BPS equations. Consider-
ing (8), the BPS energy is then reduced to

𝐸BPS = ± ∫ (𝜖
𝑖𝑘
𝜕
𝑖
𝐴
𝑘
(𝑓√2𝑈)

−𝑒𝑤𝜖
𝑖𝑘
𝐴
𝑘
𝜕
𝑖

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
2

+ 𝑖𝑤𝜖
𝑖𝑘
(𝜕
𝑖
𝜙) (𝜕
𝑘
𝜙)) 𝑑2𝑥,

(9)

and static Ampère’s law is rewritten as

𝜕
𝑘
(𝑓√2𝑈) = −𝑒𝑤𝜕

𝑘

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
2

. (10)

With it, the BPS energy becomes

𝐸BPS = ±∫ (𝜖
𝑖𝑘
𝜕
𝑖
(𝐴
𝑘
𝑓√2𝑈) + 𝑖𝑤𝜖

𝑖𝑘
(𝜕
𝑖
𝜙) (𝜕
𝑘
𝜙)) 𝑑2𝑥.

(11)

The point to be clarified here is that the integrand in (11) can
be reduced to a total derivative only when considering axially
symmetric configurations. In this context, (10) stands for
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the key condition for attaining self-duality in this generalized
Maxwell-Higgs theory.

Hence, from now on, the fields are supposed to be
described by the usual axially symmetric vortex Ansatz:

𝜙 (𝑟, 𝜃) = V𝑔 (𝑟) 𝑒
𝑖𝑛𝜃, A (𝑟, 𝜃) = −

𝜃

𝑒𝑟
(𝑎 (𝑟) − 𝑛) , (12)

where 𝑛 = ±1, ±2, ±3, . . . stands for the vorticity of the
resulting configuration, and the magnetic field is

𝐵 (𝑟) = −
1

𝑒𝑟

𝑑𝑎

𝑑𝑟
. (13)

The profile functions 𝑔(𝑟) and 𝑎(𝑟) are constrained to behave
according to the standard boundary conditions

𝑔 (0) = 0, 𝑔 (∞) = 1, (14)

𝑎 (0) = 𝑛, 𝑎 (∞) = 0, (15)

giving rise to regular solutions possessing finite energy, as
desired.

Now, we come back to (11) defining it in terms of the
energy density 𝜀bps related to the BPS solutions as

𝐸bps = ∫ 𝜀bps𝑑
2𝑥, (16)

where

𝜀bps = ∓
1

𝑒𝑟

𝑑𝐻

𝑑𝑟
, (17)

with the auxiliary function𝐻(𝑟) being given by

𝐻(𝑟) ≡ 𝑎𝑓√2𝑈. (18)

This function is finite at origin, 𝐻(0) = 𝐻
0
, and fulfills

𝐻(∞) = 0. Observing these boundary conditions for 𝐻(𝑟),
the resulting total energy (16) is

𝐸bps =
2𝜋

𝑒

󵄨󵄨󵄨󵄨𝐻0
󵄨󵄨󵄨󵄨 . (19)

One also remarks that 𝐻
0
is proportional to 𝑛, the winding

number characterizing the vortex solution.
In terms of 𝑔(𝑟) and 𝑎(𝑟), the BPS equations read

𝑑𝑔

𝑑𝑟
= ±

𝑎𝑔

𝑟
, (20)

𝐵 = ±
√2𝑈

𝑓
(21)

which solve the Euler-Lagrange equations ofmotion. In order
to perform such verification explicitly, we first write Ampère’s
law (4) in its axially symmetric form

𝑑

𝑑𝑟
(𝑓2𝐵) = −2𝑒V2𝑤

𝑔2𝑎

𝑟
, (22)

which becomes

𝑑

𝑑𝑟
(𝑓√2𝑈) = −2𝑒V2𝑤𝑔

𝑑𝑔

𝑑𝑟
, (23)

when (20) and (21) are used. The form (23) recovers the very
same condition (10) that assures the self-duality of the overall
model, revealing the consistence of the self-dual equations
with Ampère’s law. In addition, one can express (5) for the
Higgs field in terms of 𝑔(𝑟) and 𝑎(𝑟); that is,

𝑑2𝑔

𝑑𝑟2
+
1

𝑟

𝑑𝑔

𝑑𝑟
−
𝑎2𝑔

𝑟2
+

1

2𝑤
((

𝑑𝑔

𝑑𝑟
)
2

−
𝑎2𝑔2

𝑟2
)

𝑑𝑤

𝑑𝑔

=
1

2𝑤V2
(𝐵2𝑓

𝑑𝑓

𝑑𝑔
+
𝑑𝑈

𝑑𝑔
) .

(24)

It simply provides

𝑈 =
1

2
𝑓2𝐵2, (25)

when saturated by the self-dual equations, which coincides
with (21). In this way, we have explicitly shown that the self-
dual equations solve the stationary Euler-Lagrange equations
of motion.

Due to the arbitrariness of 𝑓(𝑔) and 𝑤(𝑔), the search for
solutions to the axially symmetric Euler-Lagrange equations
can be a quite hard task, even in the presence of the suitable
boundary conditions (14) and (15). A way to circumvent this
point is focusing the attention on the self-dual equations
(20) and (21). However, it is worthwhile to reinforce that
such equations only hold when the model is constrained by
condition (10), also expressed as

𝑑

𝑑𝑔
(𝑓√2𝑈) = −2𝑒V2𝑤𝑔. (26)

We can summarize in the following way: given a set of func-
tions 𝑓, 𝑤, and 𝑈 satisfying (26), regular solutions 𝑔(𝑟) and
𝑎(𝑟) can be found by solving (20) and (21) using the boundary
conditions (14) and (15). The resulting configurations stand
for topological vortices possessing finite energy given by (19),
which remains proportional to themagnetic fluxΦ

𝐵
= 2𝜋𝑛/𝑒.

The proportionality constant is finite and related to the value
of 𝑓√2𝑈 near the origin. Moreover, it is worthwhile to point
out that

𝜀bps = 2𝑈 + 2V2𝑤(
𝑎𝑔

𝑟
)
2

(27)

is the BPS energy density (17), which becomes positive
whenever (26) ensures a positive 𝑤 (for a given pair of
functions 𝑈 and 𝑓 conveniently chosen).

The next section introduces some effective Maxwell-
Higgs models for which the BPS equations (20) and (21)
can be solved analytically (instead of numerically, as usually
done). The analytical profiles representing 𝑔(𝑟), 𝑎(𝑟), 𝐵(𝑟),
and 𝜀bps (17) are depicted and compared with the usual
(numerical) ANO solution. Furthermore, the main features
of the new analytical vortices are highlighted.



4 Advances in High Energy Physics

3. Analytical BPS Vortices

Now, we present the main goal of this work by introducing
generalized Maxwell-Higgs models for which the BPS equa-
tions (20) and (21) can be solved analytically according the
finite energy boundary conditions (14) and (15). Here, for
simplicity, we only consider those configurations for which
the winding number is equal to the unity (𝑛 = 1), although
it is also possible to find solutions with higher vorticity, as it
will be explained below.

Along this section, we work with the upper signs in (20),
(21), and (17) only. Also, for simplicity, we set 𝑒 = V = 1.
Our prescription to find analytical self-dual vortices can be
described as follows. Firstly, we choose the potential 𝑈(𝑔)
supporting the spontaneous symmetry breaking of the 𝑈(1)
local gauge symmetry inherent to model (1). In the sequel,
we choose an analytical function𝑔(𝑟) satisfying the boundary
conditions (14). Then, we use 𝑔(𝑟) to solve (20), which allows
obtaining the corresponding profile for 𝑎(𝑟) fulfilling the
boundary conditions (15). In the end, we use (21) to evaluate
the expression for the generalizing function 𝑓, writing it as a
function of the radial variable 𝑟 (i.e., regarding the analytical
models as effective ones).

A general observation about the kinetic functions 𝑓2(|𝜙|)
and𝑤(|𝜙|) is that they are presented as functions of the radial
variable 𝑟, not of the field variable 𝑔, that is, |𝜙|. Expressing
𝑓 and 𝑤 in terms of 𝑔 gives very long expressions, when
possible. In general, it becomes a very difficult task.

The analytical profiles here obtained provide a set of self-
dual vortices possessing finite total energy given by (19). It is
also worthwhile to remember that the corresponding 𝑓’s and
𝑤’s are positive, as required. These new solutions are shown
in Figures 1, 2, 3, and 4, from which we highlight their main
features.

3.1. |𝜙|4-Models. We first investigate some models defined by
the usual fourth-order Higgs potential

𝑈(𝑔) =
1

2
(1 − 𝑔2)

2

, (28)

where the coupling constant for the scalar-matter self-
interaction was supposed to be equal to the unity, for
simplicity.

The |𝜙|4-models here presented possess a generalizing
function 𝑓(𝑟) finite at the boundaries (i.e., for 𝑟 = 0 and
asymptotically). In this case, the BPS equations (20) and (21)
reduce to

𝑑𝑔

𝑑𝑟
=

𝑎𝑔

𝑟
, (29)

1

𝑟

𝑑𝑎

𝑑𝑟
=

𝑔2 − 1

𝑓
. (30)

1

0.8

0.6

0.4

0.2

0

g
(r
)

0 1 2 3 4 5

r

Figure 1: Solutions to 𝑔(𝑟) given by (32) (dash-dotted red line), (37)
(dashed green line), (45) (dotted blue line), and (50) (long-dashed
gold line).Here, the solid black line is the standard (numerical) 𝑛 = 1
ANO solution.

1
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0

a
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)

0 1 2 3 4 5 6

r

Figure 2: Solutions to 𝑎(𝑟). Conventions as in Figure 1.

In particular, one clearly sees that 𝑓 = 1 leads us back to the
standard case

𝑑𝑔

𝑑𝑟
=

𝑎𝑔

𝑟
,

1

𝑟

𝑑𝑎

𝑑𝑟
= 𝑔2 − 1,

(31)

which yields the well-known Abrikosov-Nielsen-Olesen
numerical vortices [5, 6]. Moreover, families containing
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1.2
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Figure 3: Solutions to 𝐵(𝑟). Conventions as in Figure 1.
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Figure 4: Solutions to 𝜀bps. Conventions as in Figure 1.

nontrivial numerical solutions of the same kind were also
studied in [46].

We now proceed looking for analytical solutions of (29)
and (30). In this sense, by following our prescription, the first
model we introduce is defined by the BPS solution

𝑔 (𝑟) = tanh (𝑟) , (32)

which trivially obeys (14). Replacing it in (29), one achieves
the gauge field profile

𝑎 (𝑟) =
2𝑟

sinh (2𝑟)
, (33)

satisfying the boundary conditions (15), with 𝑛 = 1. Now,
by using (32) and (33) in (30), one gets the fact that the
corresponding function 𝑓(𝑟) reads as

𝑓 (𝑟) =
𝑟 (1 − cosh (2𝑟))

sinh (2𝑟) − 2𝑟 cosh (2𝑟)
, (34)

being a smooth and positive function with values 𝑓(0) = 3/4
and 𝑓(∞) = 1/2. Finally, we obtain the auxiliary function
𝐻 by substituting (28), (33), and (34) into (18). The resulting
expression is

𝐻(𝑟) =
𝑟2 sinh (𝑟)

((1/2) sinh (2𝑟) − 2𝑟cosh2 (𝑟) + 𝑟) cosh3 (𝑟)
, (35)

a smooth function for which the values at the boundaries
read as 𝐻(0) = −3/4 and 𝐻(∞) = 0, as desired. Finally, the
magnetic field associated with (33) is given by

𝐵 (𝑟) =
2 (2𝑟 cosh (2𝑟) − sinh (2𝑟))

𝑟sinh2 (2𝑟)
, (36)

whose profile is a lump centered at the origin; see the dash-
dotted red line in Figure 3. Therefore, the solutions (32)
and (33) represent analytical BPS Maxwell-Higgs vortices
possessing total energy equal to 𝐸bps = 3𝜋/2, according to
(19).

The second model, inherent to the |𝜙|4-potential, is
defined by the BPS solution

𝑔 (𝑟) = √1 − 𝑒−𝑟
2

, (37)

which also fulfills the conditions (14). From (29), we attain the
gauge field profile

𝑎 (𝑟) =
𝑟2

𝑒𝑟
2

− 1
, (38)

satisfying the boundary conditions (15) (also with 𝑛 = 1).
Then, by combining (37) and (38) in (30), the following
generalizing function is achieved:

𝑓 (𝑟) =
(𝑒−𝑟

2

− 1)
2

2 (𝑒−𝑟
2

+ 𝑟2 − 1)
. (39)

This is a positive and finite function whose values at the
boundaries are 𝑓(𝑟 = 0) = 1 and 𝑓(𝑟 = ∞) = 0. Moreover,
the corresponding𝐻(𝑟) is given by

𝐻(𝑟) =
𝑟2𝑒−2𝑟

2

(𝑒−𝑟
2

− 1)

2 (𝑒−𝑟
2

+ 𝑟2 − 1)
, (40)

providing 𝐻(0) = −1 and 𝐻(∞) = 0, as required. The
magnetic field,

𝐵 (𝑟) =
2𝑒−𝑟

2

(𝑒−𝑟
2

+ 𝑟2 − 1)

(𝑒−𝑟
2

− 1)
2

, (41)
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also is a lump centered at the origin; see the dashed green
line in Figure 3.This way, the profiles equations (37) and (38)
describe analytical self-dual vortices whose BPS total energy
is 𝐸bps = 2𝜋. In particular, it means that these analytical
solutions saturate the very same Bogomol’nyi bound fulfilled
by the usual (numerical) 𝑛 = 1 ANO vortex.

3.2. |𝜙|6-Models. As was shown in [46], the generalized
model allows finding BPS vortices even in the presence of
a higher-order potential describing the scalar-matter self-
interaction. In this sense, we now go further by introducing
analytical self-dual vortices arising in the presence of a sixth-
order potential, defined by

𝑈 (𝑔) =
1

2
𝑔2(1 − 𝑔2)

2

. (42)

The vacuum manifold of the corresponding |𝜙|6-model is
represented by a dot surrounded by a circle, with the dot
standing for a symmetric vacuum. As a consequence, under a
suitable choice of the boundary conditions to be satisfied by
the profile functions 𝑔(𝑟) and 𝑎(𝑟), the model also supports
nontopological self-dual structures possessing finite energy.
Indeed, some of us have already obtained such objects, with
results being forthcoming reported [47]. It is worthwhile to
point out that nontopological vortices do not occur in the
|𝜙|4-model (28) because it has no a symmetric vacuum (i.e.,
its vacuum manifold is a circle).

On the other hand, it is well known that the |𝜙|6-potential
(42) ensures the self-duality of the usual Chern-Simons-
Higgs (CSH) model, whose topological vortices possess both
electric and magnetic fields. Despite the fact that our gener-
alized |𝜙|6-Maxwell-Higgs model supports only noncharged
self-dual solutions, they are expected to behave in the same
general way the CSH ones do. Some numerical self-dual
|𝜙|6-Maxwell-Higgsmodels were already investigated in [46].
Here, for completeness, we consider only the analytical
solutions for it.

Returning to our prescription, under the |𝜙|6-potential
(42), the BPS equations (20) and (21) can be written as

𝑑𝑔

𝑑𝑟
=

𝑎𝑔

𝑟
, (43)

1

𝑟

𝑑𝑎

𝑑𝑟
=

𝑔 (𝑔2 − 1)

𝑓
. (44)

In addition, as we demonstrate below, the resulting general-
izing function 𝑓(𝑟) is not necessarily finite at the boundaries.

The first analytical model has the profile 𝑔(𝑟) defined by

𝑔 (𝑟) =
𝑟

4√1 + 𝑟4
, (45)

from which one gets, according to (43), the corresponding
gauge solution

𝑎 (𝑟) =
1

1 + 𝑟4
, (46)

whilst (44) gives the following generalizing function:

𝑓 (𝑟) =
(1 + 𝑟4)

5/4

(√1 + 𝑟4 − 𝑟2)

4𝑟
. (47)

It has the following behavior at the boundaries: 𝑓(0) =
𝑓(∞) = ∞. However, even in this case, one still achieves
well-behaved solutions possessing finite total energy. To
clarify the way it happens, we calculate the fields 𝐵(𝑟) and
𝐻(𝑟) arising from (46) and (45). The magnetic field

𝐵 (𝑟) =
4𝑟2

(1 + 𝑟4)
2

(48)

presents a ring-like profile, a typical magnetic behavior
related to the |𝜙|6-vortices; see the dotted blue line in Figure 3.
The auxiliary function𝐻(𝑟) reads as

𝐻(𝑟) = −
(√1 + 𝑟4 − 𝑟2)

2

4√1 + 𝑟4
, (49)

which, at the boundaries, assumes the values 𝐻(0) = −1/4
and 𝐻(∞) = 0, as desired. As a result, the analytical profiles
(45) and (46) give rise to a BPS vortex whose total energy is
𝐸bps = 𝜋/2.

The second |𝜙|6-model is a little bit more sophisticated
than the previous ones, with the Higgs profile being given by

𝑔 (𝑟) = 𝑒−(1/4)Ei(1,(1/4)𝑟
4
), (50)

with the function Ei (1, 𝑟) standing for the exponential
integral

Ei (1, 𝑟) ≡ ∫
∞

1

𝑒−𝑟𝑥

𝑥
𝑑𝑥. (51)

Nevertheless, the gauge field has a simpler solution,

𝑎 (𝑟) = 𝑒−(1/4)𝑟
4

, (52)

whereas the corresponding functions 𝑓(𝑟) and 𝐻(𝑟) are
defined by

𝑓 (𝑟) = −
𝑒−(1/2)Ei(1,(1/4)𝑟

4
) − 1

𝑟2
𝑒−(1/4)Ei(1,(1/4)𝑟

4
)+(1/4)𝑟

4

,

𝐻 (𝑟) = −
(𝑒−(1/2)Ei(1,(1/4)𝑟

4
) − 1)

2

𝑟2
𝑒−(1/2)Ei(1,(1/4)𝑟

4
),

(53)

from which we get the fact that 𝑓(0) = ∞ and 𝑓(∞) =

0, whilst 𝐻(∞) = 0 and 𝐻(0) = −(1/2)√𝑒𝛾, 𝛾 being
Euler’s constant (𝛾 = 0.5772156649 . . .). We see that 𝑓(𝑟)
is divergent at the origin, whilst vanishing asymptotically.
Notwithstanding, as in the previous case, the Bogomol’nyi
bound for the BPS total energy saturates at 𝐸bps = 𝜋√𝑒𝛾. The
magnetic field of the resulting self-dual configuration,

𝐵 (𝑟) = 𝑟2𝑒−(1/4)𝑟
4

, (54)
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also presents the aforecited typical ring-like behavior; see the
long-dashed gold line in Figure 3.

In the sequel, we depict all the analytical solutions
together with the standard ANO profile, from which we
highlight their main features and also the differences of the
generalized solutions in comparison with the usual Maxwell-
Higgs ones.

The analytical solutions defining the Higgs profiles 𝑔(𝑟)
are depicted in Figure 1. The profile (32) is plotted with the
dash-dotted red line, whilst (37) is represented by the dashed
green line; these solutions correspond to the generalized |𝜙|4-
models. On the other hand, the dotted blue line stands for
(45) and the long-dashed gold line represents (50), both
belonging to the noncanonical |𝜙|6-models. The standard
(numerical) 𝑛 = 1 ANO Higgs profile is drawn with the
solid black line. The overall conclusion is that the analytical
solutions behave in the same general way the standard one
does. However, the new profiles saturate the asymptotic value
𝑔 (𝑟 = ∞) = 1 faster, so that the new Higgs profiles
are more localized, and the corresponding bosons are more
massive than the ANO ones. From now on, we follow the
same line/color definitions established in Figure 1.

The gauge profiles 𝑎(𝑟) are plotted in Figure 2. There,
we see that the profiles (45) and (50), related to the |𝜙|6-
potential, have developed a plateau close to the origin, with
such structure being a common feature presented in the self-
dual |𝜙|6-scenarios. On the other hand, the profiles (33) and
(38), corresponding to the |𝜙|4-models, are lumps centered at
the origin.The amplitude in 𝑟 = 0 corresponds to thewinding
number 𝑛 = 1, as already commented. For large radius, all
profiles vanish monotonically.

We show the profiles we have found for themagnetic field
𝐵(𝑟) in Figure 3. The solutions regarding the fourth-order
potential are lumps centered at the origin, just as the ANO
magnetic field. On the other hand, the solutions related to the
sixth-order potential present a ring-like behavior, as expected
when considering the magnetic fields belonging to the self-
dual |𝜙|6-vortices. We also observe differences both on the
amplitudes and on the characteristic lengths of the magnetic
profiles.

At last, the BPS energy densities are depicted in Figure 4.
We see that all the profiles are lumps centered at origin, as
expected for 𝑛 = 1 vortices (including the |𝜙|6-ones). Besides
the different characteristic lengths, it is also interesting to note
that the profiles coming from the fourth-order potential have
achieved greater amplitudes than those ones related to the
sixth-order potential.

In the next section, we present our final considerations
and the perspectives regarding future works.

4. Ending Comments

We have investigated the existence of analytical BPS vortices
within the nonstandard Maxwell-Higgs scenario proposed
in [46], with such model being generalized by two positive
functions, namely, 𝑓(|𝜙|) and 𝑤(|𝜙|), which change the
overall dynamics of the original theory; see (1). By imposing
the radially symmetric ansatz (12) for the gauge and scalar

fields, we have reviewed the BPS framework and achieved
the first-order equations whose corresponding solutions have
finite energy. The self-duality arises when the condition (26)
is satisfied by the potential 𝑈 and the functions 𝑓 and 𝑤.

The existence of a well-defined Bogomol’nyi bound (19)
is ruled by an auxiliary function 𝐻(𝑟) obeying appropriated
boundary conditions which guarantee a finite total energy.
So, the well-behaved 𝐻(𝑟) selects the function 𝑓(𝑟) defining
the generalized model. With this prescription, we have
obtained analytical profiles to some 𝑛 = 1 self-dual vortex
configurations within both |𝜙|4- and |𝜙|6-models saturating
different energy bounds.

In order to compare the analytical self-dual solutions
with the ANO ones, we have depicted the profiles for the
scalar, gauge, and magnetic fields, in Figures 1, 2, and 3,
respectively, whilst the BPS energy density is plotted in
Figure 4. The overall conclusion is that the new profiles are
well-behaved in all relevant sectors, assuring the consistence
of the generalized models here proposed. Furthermore, all
the solutions have provided localized energy densities and
magnetic fields, as expected. In general, they mimic the
behavior of the well-known numerical configurations, as the
ring-like magnetic field related to the self-dual |𝜙|6-vortices.

Concerning the possibility of obtaining analytical solu-
tions with higher winding numbers, no obvious route for it
seems to be available within the models we have studied in
this work. Nevertheless, it is possible to construct analytical
BPS vortices possessing higher vorticity but different gen-
eralizing functions 𝑓(𝑟). Such procedure is clarified by the
following example related to the |𝜙|6-models. We propose

𝑔 (𝑟) =
𝑟𝑛

(1 + 𝑟𝑚)𝑛/𝑚
, (55)

with 𝑚, 𝑛 > 0, as a generalization for the Higgs profile given
by (45). This leads to

𝑎 (𝑟) =
𝑛

1 + 𝑟𝑚
, (56)

compatible with the boundary conditions for a vortex pos-
sessing any integer winding number (i.e., 𝑛 = +1, +2, +3, . . .).
The resulting magnetic field is

𝐵 (𝑟) =
𝑚𝑛𝑟𝑚−2

(1 + 𝑟𝑚)2
, (57)

whilst the corresponding 𝑓(𝑟) and𝐻(𝑟) are

𝑓 (𝑟) =
𝑟𝑛−𝑚+2

𝑛𝑚
𝑅2−3𝑛/𝑚(𝑅2𝑛/𝑚 − 𝑟2𝑛)

2

,

𝐻 (𝑟) =
𝑟2𝑛−𝑚+2

𝑚
𝑅1−6𝑛/𝑚(𝑅2𝑛/𝑚 − 𝑟2𝑛)

2

,

(58)

respectively, with 𝑅 = 1 + 𝑟𝑚. However, only the case 𝑚 =
2𝑛 + 2 provides positive 𝑓 and 𝑤, nonsingular magnetic
field and finite energy. Obviously, the choice 𝑛 = 1 or
𝑚 = 4 reduces this general proposal to the case (45). The
generalization of the vortex configurations presenting higher
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winding numbers within other field scenarios can follow this
general idea.

Regarding future works, interesting issues include the
search for the nontopological self-dual vortices arising in the
generalized Maxwell-Higgs scenario (1) when endowed by
the sixth-order potential (42); see [47]. In parallel, some of
us are also working in a general formulation of the deforma-
tion method [48–50] applicable to field models possessing
generalized dynamics [51]. These two fronts are now under
investigation, and we expect interesting results for a future
report.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

TheBrazilian authors thankCAPES, CNPq, and FAPEMA for
partial financial support.

References

[1] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge
University Press, Cambridge, UK, 2004.

[2] E. Bogomol’nyi, “The stability of classical solutions,” Soviet
Journal of Nuclear Physics, vol. 24, pp. 449–454, 1976.

[3] M. Prasad and C. Sommerfield, “Exact classical solution for the
’t Hooft Monopole and the Julia-Zee Dyon,” Physical Review
Letters, vol. 35, no. 12, p. 760, 1975.

[4] D. Finkelstein, “Kinks,” Journal of Mathematical Physics, vol. 7,
pp. 1218–1225, 1966.

[5] A. A. Abrikosov, “On the magnetic properties of superconduc-
tors of the second group,” Soviet Physics JETP, vol. 5, pp. 1174–
1182, 1957.

[6] H. B. Nielsen and P. Olesen, “Vortex-line models for dual
strings,” Nuclear Physics B, vol. 61, pp. 45–61, 1973.

[7] G. Hooft, “Magnetic monopoles in unified gauge theories,”
Nuclear Physics B, vol. 79, no. 2, pp. 276–284, 1974.

[8] A. M. Polyakov, “Particle spectrum in quantum field theory,”
JETP Letters, vol. 20, no. 6, pp. 194–195, 1974.

[9] D. Bazeia, E. da Hora, C. dos Santos, and R. Menezes, “Gener-
alized self-dual Chern-Simons vortices,” Physical Review D, vol.
81, Article ID 125014, 2010.

[10] D. Bazeia, E. da Hora, R. Menezes, H. P. de Oliveira, and C. dos
Santos, “Compactlike kinks and vortices in generalizedmodels,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 81, no. 12, Article ID 125016, 2010.

[11] C. dos Santos and E. da Hora, “Domain walls in a generalized
Chern-Simonsmodel,”TheEuropean Physical Journal C, vol. 70,
no. 4, pp. 1145–1151, 2010.

[12] C. dos Santos and E. da Hora, “Lump-like solitons in a gen-
eralized Abelian-Higgs Chern–Simons model,” The European
Physical Journal C, vol. 71, article 1519, 2011.

[13] C. dos Santos, “Compact solitons in an Abelian-Higgs Chern-
Simons model,” Physical Review D, vol. 82, Article ID 125009,
2010.

[14] D. Bazeia, E. da Hora, and D. Rubiera-Garcia, “Compact vor-
texlike solutions in a generalized Born-Infeld model,” Physical
Review D, vol. 84, no. 12, Article ID 125005, 2011.

[15] C. dos Santos and D. Rubiera-Garcia, “Generalized sine-
Gordon solitons,” Journal of Physics A, vol. 44, no. 42, Article
ID 425402, 2011.

[16] D. Bazeia, R. Casana, E. da Hora, and R. Menezes, “General-
ized self-dual Maxwell-Chern-Simons-Higgs model,” Physical
Review D—Particles, Fields, Gravitation and Cosmology, vol. 85,
no. 12, Article ID 125028, 2012.

[17] C. Adam, L. A. Ferreira, E. da Hora, A. Wereszczynskiand, and
W. J. Zakrzewski, “Some aspects of self-duality and generalised
BPS theories,” Journal of High Energy Physics, vol. 2013, article
62, 2013.

[18] E. Babichev, “Global topological 𝑘-defects,” Physical Review D,
vol. 74, no. 8, Article ID 085004, 2006.

[19] C. Adam, N. Grandi, J. Sanchez-Guillen, and A.Wereszczyński,
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