594 research outputs found

    TPCI: The PLUTO-CLOUDY Interface

    Full text link
    We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: The PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: First, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: Photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Stroemgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems.Comment: 13 pages, 10 figures, accepted for publication in A&

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts

    Определение условий перехода вязкой суспензии в вязкопластинчатый материал на сите виброгрохота

    Get PDF
    На підставі рішення рівнянь Нав’є-Стокса для установленої течії в’язкої сировини, що не стискується, по похилій ситовій поверхні аналітично визначені умови переходу вугільної шламової суспензії у в’язкопластичний матеріал при зневоднені на ситі віброгрохота.На основе решения уравнений Навье-Стокса для установившегося течения вязкой несжигаемой жидкости по наклонной ситовой поверхности аналитически определены условия перехода угольной шламовой суспензии в вязкопластинчатый материал при обезвоживании на сите виброгрохота

    Nonspatial sequence coding in CA1 neurons

    Get PDF
    The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequencememory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals’ location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus

    Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity

    Get PDF
    We operate a fiber-based cavity with an inserted diamond membrane containing ensembles of silicon vacancy centers (SiV^{-}) at cryogenic temperatures ≥4 K. The setup, sample fabrication and spectroscopic characterization are described, together with a demonstration of the cavity influence by the Purcell effect. This paves the way towards solid-state qubits coupled to optical interfaces as long-lived quantum memories

    Cryogenic platform for coupling color centers in diamond membranes to a fiberbased microcavity

    Get PDF
    We operate a fiberbased cavity with an inserted diamond membrane containing ensembles of silicon vacancy centers (SiV^-) at cryogenic temperatures 4  \geq4~K. The setup, sample fabrication and spectroscopic characterization is described, together with a demonstration of the cavity influence by the Purcell effect. This paves the way towards solid state qubits coupled to optical interfaces as long-lived quantum memories.Comment: 10 pages, 6 figure

    Transmitter-side antennas correlation in SVD-assisted MIMO systems

    Get PDF
    MIMO techniques allow increasing wireless channel performance by decreasing the BER and increasing the channel throughput and in consequence are included in current mobile communication standards. MIMO techniques are based on benefiting the existence of multipath in wireless communications and the application of appropriate signal processing techniques. The singular value decomposition (SVD) is a popular signal processing technique which, based on the perfect channel state information (PCSI) knowledge at both the transmitter and receiver sides, removes inter-antenna interferences and improves channel performance. Nevertheless, the proximity of the multiple antennas at each front-end produces the so called antennas correlation effect due to the similarity of the various physical paths. In consequence, antennas correlation drops the MIMO channel performance. This investigation focuses on the analysis of a MIMO channel under transmitter-side antennas correlation conditions. First, antennas correlation is analyzed and characterized by the correlation coefficients. The analysis describes the relation between antennas correlation and the appearance of predominant layers which significantly affect the channel performance. Then, based on the SVD, pre- and post-processing is applied to remove inter-antenna interferences. Finally, bit- and power allocation strategies are applied to reach the best performance. The resulting BER reveals that antennas correlation effect diminishes the channel performance and that not necessarily all MIMO layers must be activated to obtain the best performance

    Microstructure of Temporo-Parietal White Matter as a Basis for Reading Ability Evidence from Diffusion Tensor Magnetic Resonance Imaging

    Get PDF
    AbstractDiffusion tensor magnetic resonance imaging (MRI) was used to study the microstructural integrity of white matter in adults with poor or normal reading ability. Subjects with reading difficulty exhibited decreased diffusion anisotropy bilaterally in temporo-parietal white matter. Axons in these regions were predominantly anterior–posterior in direction. No differences in T1-weighted MRI signal were found between poor readers and control subjects, demonstrating specificity of the group difference to the microstructural characteristics measured by diffusion tensor imaging (DTI). White matter diffusion anisotropy in the temporo-parietal region of the left hemisphere was significantly correlated with reading scores within the reading-impaired adults and within the control group. The anisotropy reflects microstructure of white matter tracts, which may contribute to reading ability by determining the strength of communication between cortical areas involved in visual, auditory, and language processing
    corecore