66 research outputs found

    Herbivore diversity improves benthic community resilience to ocean acidification

    Get PDF
    Ocean acidification is expected to alter a wide range of marine systems, but there is great uncertainty about the outcome because indirect effects are often crucial in ecology. Work at volcanic seeps has shown that major ecological shifts occur due to chronic exposure to acidified seawater. Changes in herbivore densities are often seen and this may interact with direct CO2 effects to determine benthic community structure. Here, an exclusion experiment was used to test effects of herbivory in benthic communities along a pCO2 gradient off Methana (Greece). A manipulative experiment was used to examine how large herbivores affected sublittoral algal communities as seawater carbon dioxide levels increased. Sea urchins and herbivorous fish dramatically reduced macroalgal biomass at background carbon dioxide levels; this effect was not hampered by increased pCO2 despite lower sea urchin densities near the seeps, since herbivorous fish abundances increased concurrently. We found that carbon dioxide levels up to about 2000μatm are unlikely to reduce the role of herbivory in structuring benthic communities if tolerant species are able to replace those that are vulnerable. A shift from sea urchins to fish as main grazers highlights that ocean acidification may cause unexpected responses at the community level, and that maintaining high functional redundancy in marine ecosystems is key to improving their resilience

    ECOfast – An integrative ecological evaluation index for an ecosystem-based assessment of shallow rocky reefs

    Get PDF
    The degradation of marine ecosystems is a growing concern worldwide, emphasizing the need for efficient tools to assess their ecological status. Herein, a novel ecosystem-based ecological evaluation index of shallow rocky reefs is introduced and tested in the Aegean and Ionian Seas (NE Mediterranean). The index focuses on a specific set of pre-selected species, including habitat-forming, key, commercially important, and non-indigenous species, across a wide range of trophic levels (1.00–4.53). Data acquisition is conducted through rapid non-destructive SCUBA diving surveys to assess all macroscopic food web components (macroalgae, invertebrates, and fish). Two versions of the index, ECOfast and ECOfast-NIS, were developed, each applying a different approach to account for the impact of non-indigenous species. In our case study, the correlations between the two versions of the index and sea surface temperature, protection status, occurrence of carnivorous fish, and non-indigenous herbivores were assessed through generalized additive models (GAMs). The assessment assigned 93% (ECOfast) or 96% (ECOfast-NIS) of the sites to a moderate to bad ecological status, indicating an alarming situation in the shallow rocky reefs of the NE Mediterranean. Sites evaluated as poor or bad were characterized by extensive coverage of ephemeral macroalgae, absence or minimal presence of large indigenous carnivorous fish, and complete absence of one to three out of five invertebrate functional trophic groups. The community composition of macroalgae, herbivorous species, and carnivorous fishes differed between the 5 m and 15 m depth zones. Surface temperature and carnivorous fish occurrence were the most important tested predictors of the ecological status of shallow rocky reefs. The best GAMs showed that the ECOfast score declined with sea surface temperature and increased with the occurrence of carnivorous fish; ECOfast-NIS declined with sea surface temperature and the occurrence of non-indigenous fish and increased with the occurrence of carnivorous fish. The non-destructive and integrative nature of this approach, its speed of data acquisition and analysis, and its capacity to account for highly mobile predatory fish and non-indigenous species render the ECOfast index a novel, robust, and valuable tool for assessing the ecological status of shallow rocky reefs

    Seasonality affects macroalgal community response to increases in pCO2.

    Get PDF
    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season

    Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management

    Get PDF
    The goal of ecosystem-based marine spatial management is to maintain marine ecosystems in a healthy, productive and resilient condition; hence, they can sustainably provide the needed goods and services for human welfare. However, the increasing pressures upon the marine realm threaten marine ecosystems, especially seabed biotopes, and thus a well-planned approach of managing use of marine space is essential to achieve sustainability. The relative value of seabed biotopes, evaluated on the basis of goods and services, is an important starting point for the spatial management of marine areas. Herein, 56 types of European seabed biotopes and their related goods, services, sensitivity issues, and conservation status were compiled, the latter referring to management and protection tools which currently apply for these biotopes at European or international level. Fishing activities, especially by benthic trawls, and marine pollution are the main threats to European seabed biotopes. Increased seawater turbidity, dredged sediment disposal, coastal constructions, biological invasions, mining, extraction of raw materials, shipping-related activities, tourism, hydrocarbon exploration, and even some practices of scientific research, also exert substantial pressure. Although some first steps have been taken to protect the European sea beds through international agreements and European and national legislation, a finer scale of classification and assessment of marine biotopes is considered crucial in shaping sound priorities and management guidelines towards the effective conservation and sustainability of European marine resources

    ELNAIS: A collaborative network on Aquatic Alien Species in Hellas (Greece)

    Get PDF
    ELNAIS is a dynamic online information platform aiming to collect and report spatial information on Aquatic Alien Species in Greek waters. It covers freshwater, marine and estuarine waters, including not only established aliens but also casual records and cryptogenic species. The ELNAIS system includes: News, List of Greek experts, Literature of findings in Greece, List of species with information on their first introduction date and source as well as photos and distribution maps. Data providers are the scientific community (publications, grey literature, and databases) as well as citizen scientists. ELNAIS provides a useful tool towards national obligations and commitments under both the European and global frameworks in respect to Non Indigenous Species (CBD, WFD, MSFD).JRC.H.1-Water Resource

    New Mediterranean Marine biodiversity records (June 2013)

    Get PDF
    This paper concerns records of species that have extended their distribution in the Mediterranean Sea. The finding of the rare brackish angiosperm Althenia filiformis in the island of Cyprus is interesting since its insertion in the Red Data Book of the Flora of Cyprus is suggested. The following species enriched the flora or fauna lists of the relevant countries: the red alga Sebdenia dichotoma (Greece), the hydrachnid mite Pontarachna adriatica (Slovenia), and the thalassinid Gebiacantha talismani (Turkey). Several alien species were recorded in new Mediterranean localities. The record of the burrowing goby Trypauchen vagina in the North Levantine Sea (Turkish coast), suggests the start of spreading of this Lessepsian immigrant in the Mediterranean Sea. The findings of the following species indicate the extension of their occurrence in the Mediterranean Sea: the foraminifer Amphistegina lobifera (island of Zakynthos, Greece), the medusa Cassiopea andromeda (Syria), the copepod Centropages furcatus (Aegean Sea), the decapod shrimp Melicertus hathor (island of Kastellorizo, Greece), the crab Menoethius monoceros (Gulf of Tunis), the barnacles Balanus trigonus, Megabalanus tintinnabulum, Megabalanus coccopoma and the bivalves Chama asperella, Cucurbitula cymbium (Saronikos Gulf, Greece)

    Seagrass beds distribution along the Mediterranean coasts. Mediterranean Sensitive Habitats (MEDISEH) Final Report, DG MARE Specific Contract SI2.600741.

    Get PDF
    Based on the following Terms of Reference (TOR) of the content of the European Commission DG MARE request Ares (2011)665688: “Compile information supporting the identification and location of nursery areas (juveniles in their first and, if appropriate, second year of life) and spawning aggregations. This information, which is to be collated and archived in formats adequate for GIS rendering, shall refer to all the demersal and small pelagic species in the Mediterranean included in Appendix VII of Council Regulation (EC) No 199/2008 as well as for the species subject to minimum size (Council Regulation (EC) No 1967/2006-Annex III). In addition, ecological characterisation of these areas, both in terms of biological community (assemblage) and habitats therein, must be provided.” The technical tender form of the Specific Contract 2 (MEDISEH) defined the following objectives: Review of historical and current data on the locations and the status of seagrass beds, coralligenous and mäerl beds in different GSAs (Geographical Sub-Areas amending amending the Resolution GFCM/31/2007/2) all over the Mediterranean basin. Transform the information into a digitilized format within the framework of a geodatabase Review and map of all existing specific Marine Protected Areas (MPAs) in the Mediterranean area as well as areas that are under any form of national or international regulation. Identify and map suitable areas for Posidonia, coralligenous and mäerl communities by developing habitat distribution models at different spatial scales. Review and map all existing information on historical and current data of nurseries and spawning grounds of certain small pelagic (i.e., Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus spp.) and demersal species (i.e., Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa) that are included in the Data Collection Framework for the Mediterranean and subjected to minimum landing size based on Council Regulation No 1967/2006-Annex II. Analyze existing survey data and apply spatial analysis techniques in order to identify locations that are more likely to be density hot spot areas or are being more suitable for fish nurseries and spawning grounds for Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus trachurus, Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa These areas will also be characterized from an environmental and ecological perspective upon data availability. Integrate and present the aforementioned information through a Web-based GIS viewer with an associated geo-referenced database that will operate as a consulting tool for spatial management and conservation planning. Following the revision of the knowledge base, to identify gaps and suggest future research priorities. In order to meet these objectives, an expert team was composed within the MAREA Consortium from scientists with established expertise in the different topics required, and working in different areas of the Mediterranean basin. The team formed to execute the project includes the main Institutes of EU countries in the Mediterranean, all having solid reputations in the fields covered. The participating Institutes/Entities operate in the Western, Central and Eastern parts of the Mediterranean basin, and this ensures familiarity with the geographical areas that are related to the specific tendering. Moreover, a large number of scientists outside of the MAREA Consortium collaborated on a volunteer basis with data and other input. Details on the list of experts and external collaborators can be found in each Work Package in the present report. For CV details, check the MAREA expert web-site http://www.mareaproject.net

    Deliverable 1.1 review document on the management of marine areas with particular regard on concepts, objectives, frameworks and tools to implement, monitor, and evaluate spatially managed areas

    Get PDF
    The main objectives if this document were to review the existing information on spatial management of marine areas, identifying the relevant policy objectives, to identify parameters linked to the success or failure of the various Spatially Managed marine Areas (SMAs) regimes, to report on methods and tools used in monitoring and evaluation of the state of SMAs, and to identify gaps and weaknesses in the existing frameworks in relation to the implementation, monitoring, evaluation and management of SMAs. The document is naturally divided in two sections: Section 1 reviews the concepts, objectives, drivers, policy and management framework, and extraneous factors related to the design, implementation and evaluation of SMAs; Section 2 reviews the tools and methods to monitor and evaluate seabed habitats and marine populations.peer-reviewe

    European Red List of Habitats Part 1. Marine habitats

    Get PDF
    The European Red List of Habitats provides an overview of the risk of collapse (degree of endangerment) of marine, terrestrial and freshwater habitats in the European Union (EU28) and adjacent regions (EU28+), based on a consistent set of categories and criteria, and detailed data and expert knowledge from involved countries1. A total of 257 benthic marine habitat types were assessed. In total, 19% (EU28) and 18% (EU28+) of the evaluated habitats were assessed as threatened in categories Critically Endangered, Endangered and Vulnerable. An additional 12% were Near Threatened in the EU28 and 11% in the EU28+. These figures are approximately doubled if Data Deficient habitats are excluded. The percentage of threatened habitat types differs across the regional seas. The highest proportion of threatened habitats in the EU28 was found in the Mediterranean Sea (32%), followed by the North-East Atlantic (23%), the Black Sea (13%) and then the Baltic Sea (8%). There was a similar pattern in the EU28+. The most frequently cited pressures and threats were similar across the four regional seas: pollution (eutrophication), biological resource use other than agriculture or forestry (mainly fishing but also aquaculture), natural system modifications (e.g. dredging and sea defence works), urbanisation and climate change. Even for habitats where the assessment outcome was Data Deficient, the Red List assessment process has resulted in the compilation of a substantial body of useful information to support the conservation of marine habitats
    corecore