312 research outputs found

    Diet-induced Obesity Induces Endoplasmic Reticulum Stress And Insulin Resistance In The Amygdala Of Rats.

    Get PDF
    Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT pathway similar to the hypothalamus. Insulin was able to decrease neuropeptide Y (NPY) and increase oxytocin mRNA levels in the amygdala via PI3K, which may contribute to hypophagia. Additionally, obese rats did not reduce FI in response to insulin and AKT phosphorylation was decreased in the amygdala, suggesting insulin resistance. Insulin resistance was associated with ER stress and low-grade inflammation in this brain region. The inhibition of ER stress with PBA reverses insulin action/signaling, decreases NPY and increases oxytocin mRNA levels in the amygdala from obese rats, suggesting that ER stress is probably one of the mechanisms that induce insulin resistance in the amygdala.3443-

    Insulin signalling in heart involves insulin receptor substrates-1 and - 2, activation of phosphatidylinositol 3-kinase and the JAK 2-growth related pathway

    Get PDF
    Objective: Hyperinsulinemia is a common feature of obesity and hypertension and may be associated with abnormal metabolism and growth of heart muscle and vascular wall. Most of the known actions of insulin were characterised in muscle, adipose tissue and liver. In this study we investigate the initial steps of insulin signalling in rat heart. Methods: After insulin infusion in the cava vein of male Wistar rats, the insulin receptor, insulin receptor substrates-1 and -2, phosphatidylinositol 3- kinase activity and Janus kinase (JAK) 2 engagement were studied by immunoprecipitation and immunoblot of heart extracts. Results: An insulin load induces rapid autophosphorylation of the insulin receptor which is followed by the phosphorylation of insulin receptor substrates-1 and -2. The phosphorylation of these early intracellular substrates leads to the association of the p85 subunit of phosphatidylinositol 3-kinase and subsequent activation of its catalytic p110 subunit. Besides activation of the lipid metabolising enzyme phosphatidylinositol 3-kinase, the phosphorylation of insulin receptor substrates-1 and -2 engages the intracellular kinase JAK 2 and induces JAK 2-STAT 1 complex formation. Conclusion: We demonstrate that the early steps of insulin signalling in heart include the phosphorylation-activation of the insulin receptor, engagement of insulin receptor substrates-1 and -2 with the consequent activation of phosphatidylinositol 3-kinase and the involvement of the recently discovered growth related pathway-JAK 2-STAT 1

    Draft of Cheyenne & Arapahoe Report

    Get PDF
    https://digitalcommons.assumption.edu/mallet-manuscripts/1030/thumbnail.jp

    An Eye for Possibilities in the Development of Children with Cerebral Palsy: Neurobiology and Neuropsychology in a Cultural-Historical Dynamic Understanding

    Get PDF
    Taking children with Cerebral Palsy (CP) as an example, the article seeks an understanding ofchildren with disabilities that connects neuropsychological theories of neural development withthe situated cognition perspective and the child as an active participant in its social practices. Theearly brain lesion of CP is reconceptualised as a neurobiological constraint that exists in therelations between the neural, cognitive and social levels. Through a multi-method study of twochildren with CP, it is analysed how neurobiological constraints arise, evolve and sometimes areresolved through local matches between the child and its social practices. The result is discussedas support of a developmental science approach that includes processes at the social practice levelalong with knowledge of biological processes

    The role of gut-liver axis in the restriction of intrauterine growth in a model of experimental gastroschisis

    Full text link
    PURPOSE: To evaluate the intrauterine growth restriction (IUGR) by the expression of IR-&#946;, IRS-1, IRS-2, IGF-IR&#946; and Ikappa&#946; in experimental model of gastroschisis. METHODS: Pregnant rats at 18.5 days of gestation were submitted to surgery to create experimental fetal gastroschisis (term = 22 days) were divided in three groups: gastroschisis (G), control (C) and sham (S). Fetuses were evaluated for body weight (BW), intestinal (IW), liver (LW) and their relations IW/BW and LW/BW. IR-&#946; and IGF-IR&#946; receptors, IRS-1 and IRS-2 substrates and Ikappa&#946; protein were analyzed by western blotting. RESULTS: BW was lower in G, the IW and IW / BW were greater than C and S (p<0.05) groups. The liver showed no differences between groups. In fetuses with gastroschisis, compared with control fetuses, the expression of IGF-IR&#946; (p<0.001) and Ikappa&#946; (p<0.001) increased in the liver and intestine, as well as IR-&#946; (p<0.001) which decreased in both. In contrast to the intestine, IRS-1 (p<0.001) increased in the liver and IRS-2 decreased (p<0.01). CONCLUSION: The axis of the intestine liver has an important role in inflammation, with consequent changes in the metabolic pathway of glucose can contribute to the IUGR in fetuses with gastroschisis

    Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina

    Get PDF
    BACKGROUND: Infections with high-risk human papillomaviruses (HPVs), causatively linked to cervical cancer, might also play a role in the development of prostate cancer. Furthermore, the polymorphism at codon 72 (encoding either arginine or proline) of the p53 tumor-suppressor gene is discussed as a possible determinant for cancer risk. The HPV E6 oncoprotein induces degradation of the p53 protein. The aim of this study was to analyse prostate carcinomas and hyperplasias of patients from Argentina for the presence of HPV DNA and the p53 codon 72 polymorphism genotype. METHODS: HPV DNA detection and typing were done by consensus L1 and type-specific PCR assays, respectively, and Southern blot hybridizations. Genotyping of p53 codon 72 polymorphism was performed both by allele specific primer PCRs and PCR-RFLP (Bsh1236I). Fischer's test with Woolf's approximation was used for statistical analysis. RESULTS: HPV DNA was detected in 17 out of 41 (41.5 %) carcinoma samples, whereas all 30 hyperplasia samples were HPV-negative. Differences in p53 codon 72 allelic frequencies were not observed, neither between carcinomas and hyperplasias nor between HPV-positive and HPV-negative carcinomas. CONCLUSION: These results indicate that the p53 genotype is probably not a risk factor for prostate cancer, and that HPV infections could be associated with at least a subset of prostate carcinomas

    Insulin Resistance in HIV-Patients: Causes and Consequences

    Get PDF
    Here we review how immune activation and insulin resistance contribute to the metabolic alterations observed in HIV-infected patients, and how these alterations increase the risk of developing CVD. The introduction and evolution of antiretroviral drugs over the past 25 years has completely changed the clinical prognosis of HIV-infected patients. The deaths of these individuals are now related to atherosclerotic CVDs, rather than from the viral infection itself. However, HIV infection, cART, and intestinal microbiota are associated with immune activation and insulin resistance, which can lead to the development of a variety of diseases and disorders, especially with regards to CVDs. The increase in LPS and proinflammatory cytokines circulating levels and intracellular mechanisms activate serine kinases, resulting in insulin receptor substrate-1 (IRS-1) serine phosphorylation and consequently a down regulation in insulin signaling. While lifestyle modifications and pharmaceutical interventions can be employed to treat these altered metabolic functions, the mechanisms involved in the development of these chronic complications remain largely unresolved. The elucidation and understanding of these mechanisms will give rise to new classes of drugs that will further improve the quality of life of HIV-infected patients, over the age of 50

    Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer

    Get PDF
    Purpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes

    The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes

    Get PDF
    In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in β-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes
    corecore