19,293 research outputs found
Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and Case-Control Study.
Background/objectivesThe common non-coding single nucleotide polymorphism (SNP) rs3129882 in HLA-DRA is associated with risk for idiopathic Parkinson's disease (PD). The location of the SNP in the major histocompatibility complex class II (MHC-II) locus implicates regulation of antigen presentation as a potential mechanism by which immune responses link genetic susceptibility to environmental factors in conferring lifetime risk for PD.MethodsFor immunophenotyping, blood cells from 81 subjects were analyzed by qRT-PCR and flow cytometry. A case-control study was performed on a separate cohort of 962 subjects to determine association of pesticide exposure and the SNP with risk of PD.ResultsHomozygosity for G at this SNP was associated with heightened baseline expression and inducibility of MHC class II molecules in B cells and monocytes from peripheral blood of healthy controls and PD patients. In addition, exposure to a commonly used class of insecticide, pyrethroids, synergized with the risk conferred by this SNP (OR = 2.48, p = 0.007), thereby identifying a novel gene-environment interaction that promotes risk for PD via alterations in immune responses.ConclusionsIn sum, these novel findings suggest that the MHC-II locus may increase susceptibility to PD through presentation of pathogenic, immunodominant antigens and/or a shift toward a more pro-inflammatory CD4+ T cell response in response to specific environmental exposures, such as pyrethroid exposure through genetic or epigenetic mechanisms that modulate MHC-II gene expression
Fully Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy
Augmenting X-ray imaging with 3D roadmap to improve guidance is a common
strategy. Such approaches benefit from automated analysis of the X-ray images,
such as the automatic detection and tracking of instruments. In this paper, we
propose a real-time method to segment the catheter and guidewire in 2D X-ray
fluoroscopic sequences. The method is based on deep convolutional neural
networks. The network takes as input the current image and the three previous
ones, and segments the catheter and guidewire in the current image.
Subsequently, a centerline model of the catheter is constructed from the
segmented image. A small set of annotated data combined with data augmentation
is used to train the network. We trained the method on images from 182 X-ray
sequences from 23 different interventions. On a testing set with images of 55
X-ray sequences from 5 other interventions, a median centerline distance error
of 0.2 mm and a median tip distance error of 0.9 mm was obtained. The
segmentation of the instruments in 2D X-ray sequences is performed in a
real-time fully-automatic manner.Comment: Accepted to MICCAI 201
Stimulated superconductivity at strong coupling
Stimulating a system with time dependent sources can enhance instabilities,
thus increasing the critical temperature at which the system transitions to
interesting low-temperature phases such as superconductivity or superfluidity.
After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal
fermi liquid generalization) we analyze the effect in holographic
superconductors. We exhibit a simple regime in which the transition temperature
increases parametrically as we increase the frequency of the time-dependent
source.Comment: 19 pages, 2 figure. v3: Comments, references and one figure added.
Version to appear in JHE
Optical frequency comb generation from a monolithic microresonator
Optical frequency combs provide equidistant frequency markers in the
infrared, visible and ultra-violet and can link an unknown optical frequency to
a radio or microwave frequency reference. Since their inception frequency combs
have triggered major advances in optical frequency metrology and precision
measurements and in applications such as broadband laser-based gas sensing8 and
molecular fingerprinting. Early work generated frequency combs by intra-cavity
phase modulation while to date frequency combs are generated utilizing the
comb-like mode structure of mode-locked lasers, whose repetition rate and
carrier envelope phase can be stabilized. Here, we report an entirely novel
approach in which equally spaced frequency markers are generated from a
continuous wave (CW) pump laser of a known frequency interacting with the modes
of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The
intrinsically broadband nature of parametric gain enables the generation of
discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without
relying on any external spectral broadening. Optical-heterodyne-based
measurements reveal that cascaded parametric interactions give rise to an
optical frequency comb, overcoming passive cavity dispersion. The uniformity of
the mode spacing has been verified to within a relative experimental precision
of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
The nature of the pseudogap phase is a central problem in the quest to
understand high-Tc cuprate superconductors. A fundamental question is what
symmetries are broken when that phase sets in below a temperature T*. There is
evidence from both polarized neutron diffraction and polar Kerr effect
measurements that time- reversal symmetry is broken, but at temperatures that
differ significantly. Broken rotational symmetry was detected by both
resistivity and inelastic neutron scattering at low doping and by scanning
tunnelling spectroscopy at low temperature, but with no clear connection to T*.
Here we report the observation of a large in-plane anisotropy of the Nernst
effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase
diagram. We show that the CuO chains of the orthorhombic lattice are not
responsible for this anisotropy, which is therefore an intrinsic property of
the CuO2 planes. We conclude that the pseudogap phase is an electronic state
which strongly breaks four-fold rotational symmetry. This narrows the range of
possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
A single sub-km Kuiper Belt object from a stellar Occultation in archival data
The Kuiper belt is a remnant of the primordial Solar System. Measurements of
its size distribution constrain its accretion and collisional history, and the
importance of material strength of Kuiper belt objects (KBOs). Small, sub-km
sized, KBOs elude direct detection, but the signature of their occultations of
background stars should be detectable. Observations at both optical and X-ray
wavelengths claim to have detected such occultations, but their implied KBO
abundances are inconsistent with each other and far exceed theoretical
expectations. Here, we report an analysis of archival data that reveals an
occultation by a body with a 500 m radius at a distance of 45 AU. The
probability of this event to occur due to random statistical fluctuations
within our data set is about 2%. Our survey yields a surface density of KBOs
with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out
inferred surface densities from previous claimed detections by more than 5
sigma. The fact that we detected only one event, firmly shows a deficit of
sub-km sized KBOs compared to a population extrapolated from objects with r>50
km. This implies that sub-km sized KBOs are undergoing collisional erosion,
just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until
1800 hours London time on 16 December. 19 pages; 7 figure
Sensory Measurements: Coordination and Standardization
Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders
Generalized Uncertainty Principle, Modified Dispersion Relation and Barrier penetration by a Dirac particle
We have studied the energy band structure of a Dirac particle in presence of
a generalised uncertainty principle (GUP). We start from defining a modified
momentum operator and derive corresponding modified dispersion relation (MDR)
and GUP. Apart from the forbidden band within the range , being the
mass of the particle, we find the existence of additional forbidden bands at
the both ends of the spectrum. Such band structure forbids a Dirac particle to
penetrate a potential step of sufficient height (, being Planck
energy). This is also true for massless particle. Unlike the relativistic case,
a massless particle also can reflect from a barrier of sufficient height.
Finally we discuss about the Klein's paradox in presence of the GUP.Comment: 10 pages, 7 figures, LaTe
Intracellular interferons in fish : a unique means to combat viral infection
Peer reviewedPublisher PD
- …
