1,728 research outputs found

    The Effect of Intracanal Irrigants on Push out Bond Strength of CEM, Root MTA and Angelus MTA Cements to the Dentin Wall

    Get PDF
    Background and Objective: To reduce microbial contamination in cases such as perforation treatment, it is necessary to use irrigants after cement placement. The aim of the present study is to investigate the effect of intracanal irrigants on the push out bond strength of CEM, Root MTA and Angelus MTA cements to the dentin wall. Methods: In this laboratory research, 150 cross-section samples from the mid-root region of single canal teeth without caries with a thickness of 1 mm, which were randomly divided into 3 groups of 50 and filled with CEM cement, Root MTA or Angelus MTA, were examined. After the cements were set, the samples of each group were divided into 5 subgroups of 10; 4 subgroups were cleaned with sodium hypochlorite, EDTA, normal saline, 2% chlorhexidine for 30 minutes, and one subgroup was not cleaned as a control group. Then, the push out bond strength of cement with the dentin wall (MPa) and the failure pattern of the samples were evaluated. Findings: Different cleaning methods did not show any significant effect on the bond strength of CEM, Root MTA and Angelus MTA cements. In the cleaning method with saline, the bond strength of Angelus MTA (6.3±1.98) was higher than Root MTA (2.1±3.61) (p=0.004). In the cleaning method with 2% chlorhexidine, the bond strength of Angelus MTA cement (8.72±3.13) was higher compared to CEM (3.87±1.35) and Root MTA (4.66±1.76) (respectively p<0.001 and p=0.001). The most common type of failure in the Angelus MTA group was of the adhesive type, and in the CEM cement and Root MTA groups, it was of the mixed type. Conclusion: The results of the study showed that different cleaning methods have no effect on the push-out bond strength of the examined cements

    Decadal changes of the Western Arabian sea ecosystem

    Get PDF
    Historical data from oceanographic expeditions and remotely sensed data on outgoing longwave radiation, temperature, wind speed and ocean color in the western Arabian Sea (1950–2010) were used to investigate decadal trends in the physical and biochemical properties of the upper 300 m. 72 % of the 29,043 vertical profiles retrieved originated from USA and UK expeditions. Increasing outgoing longwave radiation, surface air temperatures and sea surface temperature were identified on decadal timescales. These were well correlated with decreasing wind speeds associated with a reduced Siberian High atmospheric anomaly. Shoaling of the oxycline and nitracline was observed as well as acidification of the upper 300 m. These physical and chemical changes were accompanied by declining chlorophyll-a concentrations, vertical macrofaunal habitat compression, declining sardine landings and an increase of fish kill incidents along the Omani coast

    Green Synthesized Silver Nanoparticles as Potent Antifungal Agent against Aspergillus terreus Thom

    Get PDF
    Medicinal plants are composed of a rich pool of biomolecules and have been increasingly recognized for their antimicrobial properties; however, increasing concerns have been put on the bioavailability features. Thus, this study is aimed at exploring the synthesis and characterization of silver nanoparticles synthesized by Chenopodium album L. leaf extract and assessing the antifungal activity against Aspergillus terreus Thom. Plant extract was prepared in methanol to synthetize silver nanoparticles, which were then characterized by Scanning Electron Microscopy (SEM), UV-Visible spectroscopy, and particle size analysis. UV-Visible analysis indicated maximum absorption at 378 nm, and an average particle size was observed as 25.6 nm. Oval to hexagonal shape was observed by SEM. Antifungal activity of silver nanoparticles (1, 1.5, 2, 2.5, 3, and 3.5%) was addressed against A. terreus biomass. At 3.5%, silver nanoparticles revealed to be highly effective, leading to 92% retardation in fungus growth. In next phase, various organic fractions, viz., chloroform, n-butanol, n-hexane, and ethyl acetate, were obtained from plant methanol extract, and the corresponding silver nanoparticles were prepared. These fractions were also assessed for antifungal activity, and n-hexane fraction led to 64% inhibition in A. terreus biomass. Following gas chromatography-mass spectrometry (GC-MS), 18 compounds were identified, namely, 1,3-cyclopentadiene-5-(1 methylethylidene and o-xylene), ethyl benzene, octadecane, nonane, decane, 2-methylheptane, n-hexadecane, 2-methylheptane, and eicosane, along with carbonyl compounds (4,4-dimethyl-3-hexanone) and phenols, like stearic acid, propionic acid hydrazide, and 2,4-di-T-butylphenol. These findings proved that C. album silver nanoparticles are highly effective against A. terreus.N.C.-M. acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Apium plants: Beyond simple food and phytopharmacological applications

    Get PDF
    Apium plants belong to the Apiaceae family and are included among plants that have been in use in traditional medicine for thousands of years worldwide, including in the Mediterranean, as well as the tropical and subtropical regions of Asia and Africa. Some highlighted medical benefits include prevention of coronary and vascular diseases. Their phytochemical constituents consist of bergapten, flavonoids, glycosides, furanocoumarins, furocoumarin, limonene, psoralen, xanthotoxin, and selinene. Some of their pharmacological properties include anticancer, antioxidant, antimicrobial, antifungal, nematocidal, anti-rheumatism, antiasthma, anti-bronchitis, hepatoprotective, appetizer, anticonvulsant, antispasmodic, breast milk inducer, anti-jaundice, antihypertensive, anti-dysmenorrhea, prevention of cardiovascular diseases, and spermatogenesis induction. The present review summarizes data on ecology, botany, cultivation, habitat, medicinal use, phytochemical composition, preclinical and clinical pharmacological efficacy of Apium plants and provides future direction on how to take full advantage of Apium plants for the optimal benefit to mankind.N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the strategic project ref. UID/BIM/04293/2013 and “NORTE2020-Northern Regional Operational Program” (NORTE-01-0145-FEDER-000012)

    Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications

    Get PDF
    The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.N. C. -M. acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Differentiation of Glioma and Radiation Injury in Rats Using In Vitro Produce Magnetically Labeled Cytotoxic T-Cells and MRI

    Get PDF
    A limitation with current imaging strategies of recurrent glioma undergoing radiotherapy is that tumor and radiation injury cannot be differentiated with post contrast CT or MRI, or with PET or other more complex parametric analyses of MRI data. We propose to address the imaging limitation building on emerging evidence indicating that effective therapy for recurrent glioma can be attained by sensitized T-cells following vaccination of primed dendritic cells (DCs). The purpose of this study was to determine whether cord blood T-cells can be sensitized against glioma cells (U-251) and if these sensitized cytotoxic T-cells (CTLs) can be used as cellular magnetic resonance imaging probes to identify and differentiate glioma from radiation necrosis in rodent models.Cord blood T and CD14+ cells were collected. Isolated CD14+ cells were then converted to dendritic cells (DCs), primed with glioma cell lysate and used to sensitize T-cells. Phenotypical expression of the generated DCs were analyzed to determine the expression level of CD14, CD86, CD83 and HLA-DR. Cells positive for CD25, CD4, CD8 were determined in generated CTLs. Specificity of cytotoxicity of the generated CTLs was also determined by lactate dehydrogenase (LDH) release assay. Secondary proliferation capacity of magnetically labeled and unlabeled CTLs was also determined. Generated CTLs were magnetically labeled and intravenously injected into glioma bearing animals that underwent MRI on days 3 and 7 post- injection. CTLs were also administered to animals with focal radiation injury to determine whether these CTLs accumulated non-specifically to the injury sites. Multi-echo T2- and T2*-weighted images were acquired and R2 and R2* maps created. Our method produced functional, sensitized CTLs that specifically induced U251 cell death in vitro. Both labeled and unlabeled CTLs proliferated equally after the secondary stimulation. There were significantly higher CD25 positive cells (p = <0.006) in CTLs. In addition, T2- and T2*-weighted MR images showed increased low signal intensity areas in animals that received labeled CTLs as compared to the images from animals that received control cells. Histological analysis confirmed the presence of iron positive cells in sites corresponding to MRI low signal intensity regions. Significant differences (p = <0.001) in tumor R2 and R2* values were observed among the groups of animals. Animals with radiation injury exhibited neither MRI hypointense areas nor presence of iron positive cells.Our results indicate that T-cells can be effectively sensitized by in vitro methods and used as cellular probes to identify and differentiate glioma from radiation necrosis

    Breast cancer in neurofibromatosis type 1 : overrepresentation of unfavourable prognostic factors

    Get PDF
    Background: An increased breast cancer incidence and poor survival have been reported for women with neurofibromatosis 1 (NF1). To explain the poor survival, we aimed to link the histopathology and clinical characteristics of NF1-associated breast cancers. Methods: The Finnish Cancer Registry and the Finnish NF Registry were cross-referenced to identify the NF1 patients with breast cancer. Archival NF1 breast cancer specimens were retrieved for histopathological typing and compared with matched controls. Results: A total of 32 breast cancers were diagnosed in 1404 NF1 patients during the follow-up. Women with NF1 had an estimated lifetime risk of 18.0% for breast cancer, and this is nearly two-fold compared with that of the general Finnish female population (9.74%). The 26 successfully retrieved archival NF1 breast tumours were more often associated with unfavourable prognostic factors, such as oestrogen and progesterone receptor negativity and HER2 amplification. However, survival was worse in the NF1 group (P = 0.053) even when compared with the control group matched for age, diagnosis year, gender and oestrogen receptor status. Scrutiny of The Cancer Genome Atlas data set showed that NF1 mutations and deletions were associated with similar characteristics in the breast cancers of the general population. Conclusions: These results emphasise the role of the NF1 gene in the pathogenesis of breast cancer and a need for active follow-up for breast cancer in women with NF1.Peer reviewe

    Endothelial Progenitor Cells (EPCs) as Gene Carrier System for Rat Model of Human Glioma

    Get PDF
    Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1) intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS) to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2) whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities.Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m) in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS). Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors.EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for glioma therapy as well as imaging probes

    Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing a large rodent model of brain metastasis that can be monitored using clinically relevant magnetic resonance imaging (MRI) techniques is challenging. Non-invasive imaging of brain metastasis in mice usually requires high field strength MR units and long imaging acquisition times. Using the brain seeking MDA-MB-231BR transfected with luciferase gene, a metastatic breast cancer brain tumor model was investigated in the nude rat. Serial MRI and bioluminescence imaging (BLI) was performed and findings were correlated with histology. Results demonstrated the utility of multimodality imaging in identifying unexpected sights of metastasis and monitoring the progression of disease in the nude rat.</p> <p>Methods</p> <p>Brain seeking breast cancer cells MDA-MB-231BR transfected with firefly luciferase (231BRL) were labeled with ferumoxides-protamine sulfate (FEPro) and 1-3 × 10<sup>6 </sup>cells were intracardiac (IC) injected. MRI and BLI were performed up to 4 weeks to monitor the early breast cancer cell infiltration into the brain and formation of metastases. Rats were euthanized at different time points and the imaging findings were correlated with histological analysis to validate the presence of metastases in tissues.</p> <p>Results</p> <p>Early metastasis of the FEPro labeled 231BRL were demonstrated onT2*-weighted MRI and BLI within 1 week post IC injection of cells. Micro-metastatic tumors were detected in the brain on T2-weighted MRI as early as 2 weeks post-injection in greater than 85% of rats. Unexpected skeletal metastases from the 231BRL cells were demonstrated and validated by multimodal imaging. Brain metastases were clearly visible on T2 weighted MRI by 3-4 weeks post infusion of 231BRL cells, however BLI did not demonstrate photon flux activity originating from the brain in all animals due to scattering of the photons from tumors.</p> <p>Conclusion</p> <p>A model of metastatic breast cancer in the nude rat was successfully developed and evaluated using multimodal imaging including MRI and BLI providing the ability to study the temporal and spatial distribution of metastases in the brain and skeleton.</p
    corecore