45 research outputs found

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    Get PDF
    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process

    Economic Valuation for Information Security Investment: A Systematic Literature Review

    Get PDF
    Research on technological aspects of information security risk is a well-established area and familiar territory for most information security professionals. The same cannot be said about the economic value of information security investments in organisations. While there is an emerging research base investigating suitable approaches measuring the value of investments in information security, it remains difficult for practitioners to identify key approaches in current research. To address this issue, we conducted a systematic literature review on approaches used to evaluate investments in information security. Following a defined review protocol, we searched several databases for relevant primary studies and extracted key details from the identified studies to answer our research questions. The contributions of this work include: a comparison framework and a catalogue of existing approaches and trends that would help researchers and practitioners navigate existing work; categorisation and mapping of approaches according to their key elements and components; and a summary of key challenges and benefits of existing work, which should help focus future research efforts

    Historical Archaeologies of the American West

    Full text link

    Measures of frailty in population-based studies: An overview

    Get PDF
    Although research productivity in the field of frailty has risen exponentially in recent years, there remains a lack of consensus regarding the measurement of this syndrome. This overview offers three services: first, we provide a comprehensive catalogue of current frailty measures; second, we evaluate their reliability and validity; third, we report on their popularity of use

    Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems

    No full text
    Cold-water coral ecosystems differ from each other greatly in structure, faunal makeup, and ecological function. Attributes such as substrate type, 3-D complexity, biological community, and nutrient supply also change over small temporal and spatial scales. In this chapter, we present an overview of food gathering strategies employed by a range of cold-water corals. Furthermore, the importance of corals as habitat providers for associated fauna and thus biodiversity is discussed. The coral habitats support ecosystems at various spatial scales ranging from local exposed skeleton patches on gorgonian branches to the various zones on a reef. Comparison is made between many types of animal forests made up by cold-water corals, including several types of coral gardens and coastal and offshore reefs from a wide range of environmental settings. The trophic ecology of reef types is compared, and the variation in feeding behavior across particular reefs is also discussed
    corecore