16 research outputs found

    Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households

    Get PDF
    © 2017, The Author(s). Water availability pressures, competing end-uses and sewers at capacity are all drivers for change in urban water management. Rainwater harvesting (RWH) and greywater reuse (GWR) systems constitute alternatives to reduce drinking water usage and in the case of RWH, reduce roof runoff entering sewers. Despite the increasing popularity of installations in commercial buildings, RWH and GWR technologies at a household scale have proved less popular, across a range of global contexts. For systems designed from the top-down, this is often due to the lack of a favourable cost-benefit (where subsidies are unavailable), though few studies have focused on performing full capital and operational financial assessments, particularly in high water consumption households. Using a bottom-up design approach, based on a questionnaire survey with 35 households in a residential complex in Bucaramanga, Colombia, this article considers the initial financial feasibility of three RWH and GWR system configurations proposed for high water using households (equivalent to >203L per capita per day). A full capital and operational financial assessment was performed at a more detailed level for the most viable design using historic rainfall data. For the selected configuration (‘Alt 2’), the estimated potable water saving was 44% (equivalent to 131m3/year) with a rate of return on investment of 6.5% and an estimated payback period of 23years. As an initial end-user-driven design exercise, these results are promising and constitute a starting point for facilitating such approaches to urban water management at the household scale

    Adaptation of Standardised Precipitation Index for understanding watertable fluctuations and groundwater resilience in hard-rock areas of India

    No full text
    Groundwater use in India, and many developing countries, is linked to livelihood and well-being of village communities. It is, therefore, important to characterise groundwater behaviour and resilience and identify strategies that will help to improve the sustainability of groundwater supplies. The concept of Standardised Precipitation Index (SPI) has been widely used for analysing rainfall drought. In this study, we adapt SPI to understand watertable fluctuations and assess resilience of groundwater supplies vis-A -vis rainfall variability from one year to the next. The modified SPI, called Groundwater Resilience Index (GRI), represents a normalized continuous watertable elevation variability function. The index is applied to two districts, viz., Udaipur and Aravalli in Rajasthan and Gujarat, India, respectively, to assess its usefulness. To evaluate the association of rainfall variability with groundwater depth fluctuation, SPI was also calculated. The study showed that GRI varies less than SPI, indicating that groundwater availability is less variable than the rainfall in both districts. This means that groundwater increases reliability of water supply for irrigation in both districts. The estimated SPI and GRI at 6-month intervals for the study period show that even though the groundwater is not stressed (normal condition in 75% of the months observed), there is variation in resilience of the aquifer system to drought and extreme events. Overall, the study indicated that the proposed GRI can be a useful tool for understanding watertable fluctuations and assessing groundwater resilience, especially to prioritise areas for groundwater recharge when funds for recharge works are limited

    MODET: A modular model for estimating spatially distributed evapotranspiration, surface temperature and energy balance

    No full text
    Competition for water: • Oct 2011 - World population reaches 7 billion. • 2042 - Population is projected to reach 9 billion. • Increased demands on our land and water resources to produce more food, more biofuels and more forest products. • Water resources are already over allocated. • Agriculture uses around 70 percent of all freshwater withdrawals worldwide and is by far the biggest consumer of both surface and groundwater. • Agriculture will face more competition from industrial, mining and urban users, putting greater pressure on achieving more efficient use of water for crop production. Environmental Impact: • Intense competition for water will mean less water for the environment. Policy Impact: • Coping with climate change • Accessing groundwater storage • Increased risk to food & water securit
    corecore