84 research outputs found

    Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function

    Get PDF
    The transforming growth factor β (TGFβ) superfamily proteins are principle regulators of numerous biological functions. Although recent studies have gained tremendous insights into this growth factor family in female reproduction, the functions of the receptors in vivo remain poorly defined. TGFβ type 1 receptor (TGFBR1), also known as activin receptor-like kinase 5, is the major type 1 receptor for TGFβ ligands. Tgfbr1 null mice die embryonically, precluding functional characterization of TGFBR1 postnatally. To study TGFBR1–mediated signaling in female reproduction, we generated a mouse model with conditional knockout (cKO) of Tgfbr1 in the female reproductive tract using anti-Müllerian hormone receptor type 2 promoter-driven Cre recombinase. We found that Tgfbr1 cKO females are sterile. However, unlike its role in growth differentiation factor 9 (GDF9) signaling in vitro, TGFBR1 seems to be dispensable for GDF9 signaling in vivo. Strikingly, we discovered that the Tgfbr1 cKO females develop oviductal diverticula, which impair embryo development and transit of embryos to the uterus. Molecular analysis further demonstrated the dysregulation of several cell differentiation and migration genes (e.g., Krt12, Ace2, and MyoR) that are potentially associated with female reproductive tract development. Moreover, defective smooth muscle development was also revealed in the uteri of the Tgfbr1 cKO mice. Thus, TGFBR1 is required for female reproductive tract integrity and function, and disruption of TGFBR1–mediated signaling leads to catastrophic structural and functional consequences in the oviduct and uterus

    Role of PCSK5 Expression in Mouse Ovarian Follicle Development: Identification of the Inhibin α- and β-Subunits as Candidate Substrates

    Get PDF
    Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and βB-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability

    Gene Bionetwork Analysis of Ovarian Primordial Follicle Development

    Get PDF
    Ovarian primordial follicles are critical for female reproduction and comprise a finite pool of gametes arrested in development. A systems biology approach was used to identify regulatory gene networks essential for primordial follicle development. Transcriptional responses to eight different growth factors known to influence primordial follicles were used to construct a bionetwork of regulatory genes involved in rat primordial follicle development. Over 1,500 genes were found to be regulated by the various growth factors and a network analysis identified critical gene modules involved in a number of signaling pathways and cellular processes. A set of 55 genes was identified as potential critical regulators of these gene modules, and a sub-network associated with development was determined. Within the network two previously identified regulatory genes were confirmed (i.e., Pdgfa and Fgfr2) and a new factor was identified, connective tissue growth factor (CTGF). CTGF was tested in ovarian organ cultures and found to stimulate primordial follicle development. Therefore, the relevant gene network associated with primordial follicle development was validated and the critical genes and pathways involved in this process were identified. This is one of the first applications of network analysis to a normal developmental process. These observations provide insights into potential therapeutic targets for preventing ovarian disease and promoting female reproduction

    Elevated level of inhibin-α subunit is pro-tumourigenic and pro-metastatic and associated with extracapsular spread in advanced prostate cancer

    Get PDF
    The biological function of inhibin-α subunit (INHα) in prostate cancer (PCa) is currently unclear. A recent study associated elevated levels of INHα in PCa patients with a higher risk of recurrence. This prompted us to use clinical specimens and functional studies to investigate the pro-tumourigenic and pro-metastatic function of INHα. We conducted a cross-sectional study to determine a link between INHα expression and a number of clinicopathological parameters including Gleason score, surgical margin, extracapsular spread, lymph node status and vascular endothelial growth factor receptor-3 expression, which are well-established prognostic factors of PCa. In addition, using two human PCa cell lines (LNCaP and PC3) representing androgen-dependent and -independent PCa respectively, we investigated the biological function of elevated levels of INHα in advanced cancer. Elevated expression of INHα in primary PCa tissues showed a higher risk of PCa patients being positive for clinicopathological parameters outlined above. Over-expressing INHα in LNCaP and PC3 cells demonstrated two different and cell-type-specific responses. INHα-positive LNCaP demonstrated reduced tumour growth whereas INHα-positive PC3 cells demonstrated increased tumour growth and metastasis through the process of lymphangiogenesis. This study is the first to demonstrate a pro-tumourigenic and pro-metastatic function for INHα associated with androgen-independent stage of metastatic prostate disease. Our results also suggest that INHα expression in the primary prostate tumour can be used as a predictive factor for prognosis of PCa

    Proteomic Analyses Reveal Common Promiscuous Patterns of Cell Surface Proteins on Human Embryonic Stem Cells and Sperms

    Get PDF
    BACKGROUND: It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells. METHODS AND PRINCIPAL FINDINGS: Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells

    GDF9 is Transiently Expressed in Oocytes before Follicle Formation in the Human Fetal Ovary and is Regulated by a Novel NOBOX Transcript

    Get PDF
    During human fetal ovary development, the process of primordial follicle formation is immediately preceded by a highly dynamic period of germ cell and somatic cell reorganisation. This is regulated by germ-cell specific transcription regulators, by the conserved RNA binding proteins DAZL and BOLL and by secreted growth factors of the TGFβ family, including activin βA: these all show changing patterns of expression preceding follicle formation. In mice, the transcription factor Nobox is essential for follicle formation and oocyte survival, and NOBOX regulates the expression of GDF9 in humans. We have therefore characterised the expression of GDF9 in relation to these known key factors during follicle formation in the human fetal ovary. mRNA levels of GDF9, BMP15 and NOBOX were quantified by qRT-PCR and showed dramatic increases across gestation. GDF9 protein expression was localised by immunohistochemistry to the same population of germ cells as those expressing activin βA prior to follicle formation but did not co-localise with either BOLL or DAZL. A novel NOBOX isoform was identified in fetal ovary that was shown to be capable of up-regulating the GDF9 promoter in reporter assays. Thus, during oogenesis in humans, oocytes go through a dynamic and very sharply demarcated sequence of changes in expression of these various proteins, even within individual germ cell nests, likely to be of major functional significance in determining selective germ cell survival at this key stage in ovarian development. Transcriptional variation may contribute to the range of age of onset of POI in women with NOBOX mutations

    Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.</p> <p>The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.</p> <p>Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.</p> <p>Results</p> <p>We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (<it>SOHLH2</it>, <it>MAEL</it>, <it>MATER</it>, <it>VASA</it>, <it>GDF9</it>, <it>BMP15</it>) and three granulosa cell-specific genes (<it>KL</it>, <it>GATA4</it>, <it>AMH</it>).</p> <p>A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.</p> <p>Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.</p> <p>Conclusions</p> <p>The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.</p

    Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase

    Get PDF
    Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins-HORMAD1 and HORMAD2-in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals

    SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing

    Get PDF
    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number
    • …
    corecore