683 research outputs found
CYP3A4 and CYP3A5 genotyping by Pyrosequencing
BACKGROUND: Human cytochrome P450 3A enzymes, particularly CYP3A4 and CYP3A5, play an important role in drug metabolism. CYP3A expression exhibits substantial interindividual variation, much of which may result from genetic variation. This study describes Pyrosequencing assays for key SNPs in CYP3A4 (CYP3A4*1B, CYP3A4*2, and CYP3A4*3) and CYP3A5 (CYP3A5*3C and CYP3A5*6). METHODS: Genotyping of 95 healthy European and 95 healthy African volunteers was performed using Pyrosequencing. Linkage disequilibrium, haplotype inference, Hardy-Weinberg equilibrium, and tag SNPs were also determined for these samples. RESULTS: CYP3A4*1B allele frequencies were 4% in Europeans and 82% in Africans. The CYP3A4*2 allele was found in neither population sample. CYP3A4*3 had an allele frequency of 2% in Europeans and 0% in Africans. The frequency of CYP3A5*3C was 94% in Europeans and 12% in Africans. No CYP3A5*6 variants were found in the European samples, but this allele had a frequency of 16% in the African samples. Allele frequencies and haplotypes show interethnic variation, highlighting the need to analyze clinically relevant SNPs and haplotypes in a variety of ethnic groups. CONCLUSION: Pyrosequencing is a versatile technique that could improve the efficiency of SNP analysis for pharmacogenomic research with the ultimate goal of pre-screening patients for individual therapy selection
Lambda and Antilambda polarization from deep inelastic muon scattering
We report results of the first measurements of Lambda and Antilambda
polarization produced in deep inelastic polarized muon scattering on the
nucleon. The results are consistent with an expected trend towards positive
polarization with increasing x_F. The polarizations of Lambda and Antilambda
appear to have opposite signs. A large negative polarization for Lambda at low
positive x_F is observed and is not explained by existing models.A possible
interpretation is presented.Comment: 9 pages, 2 figure
Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8(+) T cell-eliciting epitopes, a universal CD4(+) helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8(+) T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8(+) T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis
3D laser nano-printing on fibre paves the way for super-focusing of multimode laser radiation
Multimode high-power laser diodes suffer from inefficient beam focusing, leading to a focal spot 10–100 times greater than the diffraction limit. This inevitably restricts their wider use in ‘direct-diode’ applications in materials processing and biomedical photonics. We report here a ‘super-focusing’ characteristic for laser diodes, where the exploitation of self-interference of modes enables a significant reduction of the focal spot size. This is achieved by employing a conical microlens fabricated on the tip of a multimode optical fibre using 3D laser nano-printing (also known as multi-photon lithography). When refracted by the conical surface, the modes of the fibre-coupled laser beam self-interfere and form an elongated narrow focus, usually referred to as a ‘needle’ beam. The multiphoton lithography technique allows the realisation of almost any optical element on a fibre tip, thus providing the most suitable interface for free-space applications of multimode fibre-delivered laser beams. In addition, we demonstrate the optical trapping of microscopic objects with a super-focused multimode laser diode beam thus rising new opportunities within the applications sector where lab-on-chip configurations can be exploited. Most importantly, the demonstrated super-focusing approach opens up new avenues for the ‘direct-diode’ applications in material processing and 3D printing, where both high power and tight focusing is required
Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy
To determine whether molecular parameters could be partly responsible for resistance or sensitivity to oxaliplatin (OX)-based chemotherapy used as first-line treatment in advanced colorectal cancer (CRC). We studied the usefulness of the excision repair cross-complementing 1 (ERCC1), xeroderma pigmentosum group D (XPD), XRCC1 and GSTP1 polymorphisms as predictors of clinical outcome in these patients. We treated 126 CRC patients with a first-line OX/5-fluorouracil chemotherapeutic regimen. Genetic polymorphisms were determined by real-time PCR on an ABI PRISM 7000, using DNA from peripheral blood. Clinical response (CR), progression-free survival (PFS) and overall survival (OS) were evaluated according to each genotype. In the univariate analysis for CR, ERCC1-118 and XPD 751 polymorphisms were significant (P=0.02 and P=0.05, respectively). After adjustment for the most relevant clinical variables, only ERCC1-118 retained significance (P=0.008). In the univariate analysis for PFS, ERCC1-118 and XPD 751 were significant (P=0.003 and P=0.009, respectively). In the multivariant analysis, only the XPD 751 was significant for PFS (P=0.02). Finally, ERCC1-118 and XPD 751 polymorphisms were significant in the univariate analysis for OS (P=0.006 and P=0.015, respectively). Both genetic variables remained significant in the multivariate Cox survival analysis (P=0.022 and P=0.03). Our data support the hypothesis that enhanced DNA repair diminishes the benefit of platinum-based treatments
Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Klotho−/− Mice
Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23−/− and Klotho−/− (Kl−/−) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23−/− mice ameliorated the phenotype in Fgf23−/−/PTH−/− mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23−/− mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl−/− (Kl−/−/PTH−/− or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl−/−/PTH−/− mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23−/−/PTH−/− mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl−/−/PTH−/− mice. Moreover, continuous PTH infusion of Kl−/− mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl−/−, but not of Fgf23−/− mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho
- …