1,992 research outputs found

    Root Fracture in Immature Tooth: Report of a Case

    Get PDF
    Root fracture injuries affect 0.5–7% of permanent teeth. Although this type of injury is rarely seen in teeth with immature root formation, the prognosis is generally good depending on the site of the fracture. A case report of horizontal root fracture in maxillary central incisor of an 8-year and 3-month-old girl and its treatment was presented

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-Ξ³ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    Histological validation of a type 1 diabetes clinical diagnostic model for classification of diabetes

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAims: Misclassification of diabetes is common due to an overlap in the clinical features of type 1 and type 2 diabetes. Combined diagnostic models incorporating clinical and biomarker information have recently been developed that can aid classification, but they have not been validated using pancreatic pathology. We evaluated a clinical diagnostic model against histologically defined type 1 diabetes. Methods: We classified cases from the Network for Pancreatic Organ donors with Diabetes (nPOD) biobank as type 1 (nΒ =Β 111) or non-type 1 (nΒ =Β 42) diabetes using histopathology. Type 1 diabetes was defined by lobular loss of insulin-containing islets along with multiple insulin-deficient islets. We assessed the discriminative performance of previously described type 1 diabetes diagnostic models, based on clinical features (age at diagnosis, BMI) and biomarker data [autoantibodies, type 1 diabetes genetic risk score (T1D-GRS)], and singular features for identifying type 1 diabetes by the area under the curve of the receiver operator characteristic (AUC-ROC). Results: Diagnostic models validated well against histologically defined type 1 diabetes. The model combining clinical features, islet autoantibodies and T1D-GRS was strongly discriminative of type 1 diabetes, and performed better than clinical features alone (AUC-ROC 0.97 vs. 0.95; PΒ =Β 0.03). Histological classification of type 1 diabetes was concordant with serum C-peptide [median <Β 17Β pmol/l (limit of detection) vs. 1037Β pmol/l in non-type 1 diabetes; PΒ <Β 0.0001]. Conclusions: Our study provides robust histological evidence that a clinical diagnostic model, combining clinical features and biomarkers, could improve diabetes classification. Our study also provides reassurance that a C-peptide-based definition of type 1 diabetes is an appropriate surrogate outcome that can be used in large clinical studies where histological definition is impossible. Parts of this study were presented in abstract form at the Network for Pancreatic Organ Donors Conference, Florida, USA, 19–22 February 2019 and Diabetes UK Professional Conference, Liverpool, UK, 6–8 March 2019.Diabetes UKNational Institutes of Health (NIH)National Institute for Health Research (NIHR)JDRFHelmsley Charitable Trus

    Applying refinement to the use of mice and rats in rheumatoid arthritis research

    Get PDF
    Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat β€˜models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research

    Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo

    Get PDF
    Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Ξ”lgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Ξ”lgt mutant had markedly reduced lipoprotein expression on the cell surface. The Ξ”lgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Ξ”lgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Ξ”lgt mutant were associated with only slightly delayed growth in complete medium. However the Ξ”lgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Ξ”lgt mutant from establishing invasive infection

    Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    Get PDF
    We investigated toxicity of 2-3 layered >1 ΞΌm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 ΞΌg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis
    • …
    corecore