2,013 research outputs found
Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules
Medical Research Council, Engineering and Physical Sciences
Research, Biotechnology and Biological Sciences Research
Council, Royal Academy of Engineering, Russian Governmen
Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping
Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al
Nernst branes in gauged supergravity
We study static black brane solutions in the context of N = 2 U(1) gauged
supergravity in four dimensions. Using the formalism of first-order flow
equations, we construct novel extremal black brane solutions including examples
of Nernst branes, i.e. extremal black brane solutions with vanishing entropy
density. We also discuss a class of non-extremal generalizations which is
captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor
typographic changes, v3: added some clarifying remarks, version published in
JHE
SpacEscape – How a Mobile Game Impact Science Learning - 2019 Presidential Research Grant Report
This project used a laboratory trial to examine learner problem-solving in a mobile Serious Game (SG) environment designed for learning space science in middle school. It intends to understand if and how mobile game could impact learner problem-solving. To conduct the study, a team of 12 members worked together for six months on the design, development and testing the SpaceEscape mobile game for Android devices. The data was collected in a local middle school, and over 250 students participated in the study. We will share the highlights, findings, and future research in this report
FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells
Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours
Phase II SpacEscape Mobile Game for Learning Space Science 2020 Report
This project is the phase II of the awarded 2019 Presidential Research Grant Project SpacEscape (PRG 2020-07; https://www.harrisburgu.edu/spacescape/). By working with teachers and students from Mechanicsburg School District, Susquehanna Township Middle school, Crossroads Middle School, and Pequea Valley High school, the research team published the mobile science learning game SpacEscape to Google Play Store, introduced the game to more than 1,000 middle school students even during the pandemic, collected more data to understand how learner conduct problem-solving using mobile games, and presented the research at the Games for Change 2020 Virtual Conference to more than 500 attendees. In this report, we will share the activities, findings, and future research of the project
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
- …
