24 research outputs found

    Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins

    Get PDF
    This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death

    Age-Related Tooth Wear Differs between Forest and Savanna Primates

    Get PDF
    Tooth wear in primates is caused by aging and ecological factors. However, comparative data that would allow us to delineate the contribution of each of these factors are lacking. Here, we contrast age-dependent molar tooth wear by scoring percent of dentine exposure (PDE) in two wild African primate populations from Gabonese forest and Kenyan savanna habitats. We found that forest-dwelling mandrills exhibited significantly higher PDE with age than savanna yellow baboons. Mandrills mainly feed on large tough food items, such as hard-shell fruits, and inhabit an ecosystem with a high presence of mineral quartz. By contrast, baboons consume large amounts of exogenous grit that adheres to underground storage organs but the proportion of quartz in the soils where baboons live is low. Our results support the hypothesis that not only age but also physical food properties and soil composition, particularly quartz richness, are factors that significantly impact tooth wear. We further propose that the accelerated dental wear in mandrills resulting in flatter molars with old age may represent an adaptation to process hard food items present in their environment

    Biodegradation of α- and β-hexachlorocyclohexane by Indigenous Actinobacteria

    No full text
    Abstract The organochlorine pesticide lindane (γ-HCH,) and its non-insecticidal isomers α-, β-, and δ- continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. The present study reports the first results on the ability of Actinobacterias strains, isolated from a HCH-polluted site, to grow in a minimal medium containing α-, β-, HCH (8.3 mgL−1) as sole source of carbon. Growth of cultures and HCHs degradation by Streptomyces sp. M7 was investigated after 1, 2, 3, and 4 days of incubation by dry weight and GC with ECD detection, respectively. Streptomyces sp. M7 is able to metabolize the HCHs: removed to 100% of a-HCH and 55% of b-HCH in the optimal culture conditions: 30 ºC, pH 7 and the isomers maxima concentration of 8.3 mg L-1. Also, Streptomyces sp. M7 showed greater overall growth in the presence of a-HCH than b-HCH that the only carbon source, which is associated with total or partial removal of the isomers respectively.Fil: Sineli, Pedro Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Cuozzo, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Cell immobilization technique for the enhanced removal of lindane using Streptomyces strains isolated from Northwestern Argentina

    No full text
    Lindane (γ-HCH) is an organochlorine insecticide which has a negative effect as a pollutant agent of soil, water and sediments. Nowadays it has been banned in almost all countries of the world, but its residues still remain in the environment. In this context, bioremediation, involving the use of microorganisms to degrade environmental contaminants, has received much attention as an effective biotechnological approach to clean up this kind of pollutants. Moreover, cell immobilization has been shown to present diverse advantages over conventional systems using free cells, such as the possibility of employing higher cell density, easier separation of cells from the system, repeated use of cells and better protection of cells from harsh environments. Thereby, this chapter compiles information about: 1) the advantages and limitations of the use of immobilized cells, 2) the comparison between free or immobilized cells for lindane removal by single cultures of actinobacteria, isolated from polluted environments in the northwest of Argentina, and 3) lindane removal by free and immobilized consortia of Streptomyces spp.Fil: Sáez, Juliana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tucumán. Unidad de Administración Territorial; Argentina. Universidad del Norte Santo Tomás de Aquino. Facultad de Ciencias de la Salud; ArgentinaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Universidad del Norte Santo Tomás de Aquino. Facultad de Ciencias de la Salud; Argentin

    Pesticides Removal Using Actinomycetes and Plants

    No full text
    The γ-hexachlorocyclohexane (γ-HCH, lindane) is an organochlorine pesticide used in agriculture and medicine to world level. It has a big tendency to bioaccumulation into the environment so is listed as a priority pollutant by the US EPA. Hence the development of new technologies to remediate these sites using microorganisms is every time more necessary. The actinomycetes are Gram-positive bacteria with great potential to bioremediate xenobiotics. One strain, Streptomyces sp. M7, isolated from organochlorine pesticide contaminated sediment, was selected for its capacity to grow in presence of lindane as only carbon source. This microorganism was cultured in soil extract medium added of lindane 100 μg L−1, obtaining a maximal growth of 0.065 mg mL−1, similar to the control, with a highest lindane remotion of 70.4 % at 30°C and pH 7. When different initial pesticide concentrations (100, 150, 200, and 300 μg L−1) were added in soil medium, an increment of the microbial growth was detected in all the concentrations tested. Also a diminution of the residual lindane concentration was determined in the soil samples in relation to controls without bacteria (29.1, 78.0, 38.8, and 14.4 %, respectively). Besides, it was determined the optimum Streptomyces sp. M7 inoculum when lindane 100 μg kg−1soil was added to the soil sample. The optimum inoculum was 2 g kg−1 soil for obtaining the most efficiently bioremediation process: the lindane removal in these conditions was 67.8 % at 28 days of incubation. Later it was considered necessary to know the pesticide effects on maize plants seeded in lindane-contaminated soil previously inoculated with Streptomyces sp. M7. Lindane concentrations of 100, 200, and 400 mg kg−1 soil did not affect the germination and vigor index of maize plants seeded in contaminated soils without Streptomyces sp. M7. When this microorganism was inoculated at the same conditions, a better vigor index was observed and 68 % of lindane was removed. In this connection, Streptomyces sp. M7 was grown on culture medium in presence of root exudates of maize, spiked with 1.66 mg L−1 of lindane. The highest level of pesticide removal obtained on this condition suggests that root exudates enhanced removal of lindane by the bacterium. On the other hand, little information is available on the ability of biotransformation of organochlorine pesticides by actinomycete strains. It was demonstrated that Streptomyces sp. M7 possesses the LinA enzyme that catalyzes dehydrochlorination of lindane to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN) via γ-pentachlorocyclohexene (γ-PCCH). These results confirm that actinomycete strains could be considered one of the most promising bacterial groups for lindane biodegradation in contaminated environment. Particularly, Streptomyces sp. M7 could be used for this purpose.Fil: Alvarez, Analia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Fuentes, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad del Norte Santo Tomás de Aquino. Facultad de Ciencias de la Salud; ArgentinaFil: Cuozzo, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Sáez, Juliana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad del Norte Santo Tomás de Aquino. Facultad de Ciencias de la Salud; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentin
    corecore