62 research outputs found

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs

    An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup

    Get PDF
    © 2019 American Society for Clinical Investigation. All rights reserved. BACKGROUND. Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar "molecular phenotypes" may improve therapeutic efficacy in COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238), and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy

    The Immunological Synapse: a Dynamic Platform for Local Signaling

    Get PDF
    The immunological synapse (IS) as a concept has evolved from a static view of the junction between T cells and their antigen-presenting cell partners. The entire process of IS formation and extinction is now known to entail a dynamic reorganization of membrane domains and proteins within and adjacent to those domains. Discussion The entire process is also intricately tied to the motility machinery—both as that machinery directs “scanning” prior to T-cell receptor engagement and as it is appropriated during the ongoing developments at the IS. While the synapse often remains dynamic in order to encourage surveillance of new antigen-presenting surfaces, cytoskeletal forces also regulate the development of signals, likely including the assembly of ion channels. In both neuronal and immunological synapses, localized Ca 2+ signals and accumulation or depletion of ions in microdomains accompany the concentration of signaling molecules in the synapse. Such spatiotemporal signaling in the synapse greatly accelerates kinetics and provides essential checkpoints to validate effective cell–cell communication

    Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterised pathologically by a marked desmoplastic stromal reaction that significantly reduces the sensitivity and specificity of cytogenetic analysis. To identify genetic alterations that reflect the characteristics of the tumour in vivo, we screened a total of 23 microdissected PDAC tissue samples using array-based comparative genomic hybridisation (array CGH) with 1 Mb resolution. Highly stringent statistical analysis enabled us to define the regions of nonrandom genomic changes. We detected a total of 41 contiguous regions (>3.0 Mb) of copy number changes, such as a genetic gain at 7p22.2–p15.1 (26.0 Mb) and losses at 17p13.3–p11.2 (13.6 Mb), 18q21.2–q22.1 (12.0 Mb), 18q22.3–q23 (7.1 Mb) and 18q12.3–q21.2 (6.9 Mb). To validate our array CGH results, fluorescence in situ hybridisation was performed using four probes from those regions, showing that these genetic alterations were observed in 37–68% of a separate sample set of 19 PDAC cases. In particular, deletion of the SEC11L3 gene (18q21.32) was detected at a very high frequency (13 out of 19 cases; 68%) and in situ RNA hybridisation for this gene demonstrated a significant correlation between deletion and expression levels. It was further confirmed by reverse transcription–PCR that SEC11L3 mRNA was downregulated in 16 out of 16 PDAC tissues (100%). In conclusion, the combination of tissue microdissection and array CGH provided a valid data set that represents in vivo genetic changes in PDAC. Our results raise the possibility that the SEC11L3 gene may play a role as a tumour suppressor in this disease

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Precursor chemistry for TiO2: titanium complexes with a mixed nitrogen/oxygen ligand sphere

    No full text
    Novel mixed amido-malonato complexes of titanium are reported. The complexes were synthesized by partially replacing the amido groups from the complexes [Ti(NMe2)(4)] and [Ti(NEt2)(4)] via Bronstedt acid/base reactions, using the malonate-ligands di-isopropylmalonate (Hdpml) and di-tert-butylmalonate (Hdbm]). Four representative complexes were synthesized and fully characterised by H-1 NMR, C-13 NMR, CHN analysis and mass spectrometry. The crystal structures of the six-coordinated complexes [Ti(NMe2)(2)(dbml)(2)] (3) and [Ti(NEt2)(2)(dbml)(2)] (4) are presented and discussed. The complexes are solids and the chemical and thermal characteristics of the complexes strongly depend on the substitution at the malonate ligand. While dpml containing complexes show a promising behaviour for classical MOCVD, dbml containing complexes seem to be more suitable for liquid injection-metal-organic chemical vapour deposition (LI-MOCVD). Based on its thermal characteristics, the most promising complex for thermal CVD, [Ti(NEt2)(2)(dpml)(2)] (2) was selected for preliminary MOCVD experiments, which indicate a good suitability for the deposition of TiO2 thin films
    corecore