146 research outputs found

    KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia

    Get PDF
    Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders

    Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals

    Get PDF
    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders

    Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field

    Molecular Epidemiology of HIV-1 Subtypes in India: Origin and Evolutionary History of the Predominant Subtype C

    Get PDF
    This thesis describes the translational genomics of HIV-1subtype C in India from its origin to therapeutic response with the aim to improve our knowledge for better therapeutic and preventive strategies to combat HIV/AIDS. In a systemic approach, we identified the molecular phylogeny of HIV-1 subtypes circulating in India and the time to most recent common ancestors (tMRCA) of predominant HIV-1 subtype C strains. Additionally, this thesis also studied drug resistance mutations in children, adolescents and adults, the role of host factors in evolution of drug resistance, and population dynamics of viremia and viral co-receptor tropism in perinatal transmission. Finally, the long term therapeutic responses on Indian national first-line antiretroviral therapy were also studied. In Paper I, we reported an increase in the HIV-1 recombinant forms in the HIV-1 epidemiology using a robust subtyping methodology. While the study confirmed HIV- 1 subtype C as a dominant subtype, its origin was dated back to the early 1970s from a single or few genetically related strains from South Africa, whereafter, it has evolved independently. In Paper II, the lethal hypermutations due to the activity of human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (hA3G) was significantly associated with antiretroviral therapy (ART) failure in Indian HIV-1 subtype C patients. The presence of M184I and M230I mutations were observed due to the editing of hA3G in the proviral compartment but stop codons were also found in the open reading frames and the same drug resistance mutations were absent in plasma virus. Therefore, it is unlikely that the viral variants which exhibit hypermutated sequences and M184I and/or M230I will mature and expand in vivo and hence are unlikely to have any clinical significance. The high concordance of drug resistance genotyping in the plasma and proviral compartments in therapy-naïve patients, gives weight to the idea of using whole blood for surveillance of drug resistance mutations which precludes logistic challenges of cold chain transport. In Papers III and IV, we identified a substantial proportion of HIV-1 subtype C perinatally-infected older children who had a high burden of plasma viremia but also had high CD4+ T-cell counts. In addition, older children with HIV-1 subtype C infection presented a high prevalence of predicted X4 and R5/X4 tropic strains which indicates that HIV-1 subtype C strains required longer duration of infection and greater disease progression to co-receptor transition from R5- to X4-tropic strains (IV). Our studies also indicate that transmitted drug resistance is low among Indian HIV-1 infected children, adolescents (III) and adults (II). In Paper V, in a longitudinal cohort study, a good long-term response to the Indian national first-line therapy for a median of nearly four years with 2.8% viral failure, indicating the overall success of the Indian ART program. Our study also showed that three immunologically well patients with virological rebound and major viral drug resistance mutations (M184V, K103N and Y181C) during one study visit had undetectable viral load at their next visit. These findings suggest that use of multiple parameters like patients’ immunological (CD4+ T-cell count), virological (viral load) and drug resistance data should all be used to optimize the treatment switch to second line therapy. In conclusion, this translational genomics study enhances our knowledge about the HIV-1 subtype C strains circulating in India which are genetically distinct from prototype African subtype C strains. Considerably more research using appropriate models need to be performed to understand the phenotypic and biological characteristics of these strains to guide efficient disease intervention and management strategies

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)

    Discordant effect of body mass index on bone mineral density and speed of sound

    Get PDF
    BACKGROUND: Increased BMI may affect the determination of bone mineral density (BMD) by dual X-ray absorptiometry (DXA) and speed of sound (SOS) measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI) on BMD and SOS measured along bones. METHODS: We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m(2)), and 11 lean (BMI = 21 kg/m(2)) postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. RESULTS: Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P < 0.00001). Femoral neck BMD in the overweight – but not in the lean group highly correlated with BMI (R = 0.68. P < 0.0001). Mean SOS at all measurement sites was similar in both groups and did not correlate with BMI. Bone turnover was similar in the two study groups. CONCLUSIONS: The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women

    Plasmodium Protease ROM1 Is Important for Proper Formation of the Parasitophorous Vacuole

    Get PDF
    Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1–6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host

    Separated by a Common Language: Awareness of Term Usage Differences Between Languages and Disciplines in Biopreparedness

    Get PDF
    Preparedness for bioterrorism is based on communication between people in organizations who are educated and trained in several disciplines, including law enforcement, health, and science. Various backgrounds, cultures, and vocabularies generate difficulties in understanding and interpretating terms and concepts, which may impair communication. This is especially true in emergency situations, in which the need for clarity and consistency is vital. The EU project AniBio- Threat initiated methods and made a rough estimate of the terms and concepts that are crucial for an incident, and a pilot database with key terms and definitions has been constructed. Analysis of collected terms and sources has shown that many of the participating organizations use various international standards in their area of expertise. The same term often represents different concepts in the standards from different sectors, or, alternatively, different terms were used to represent the same or similar concepts. The use of conflicting terminology can be problematic for decision makers and communicators in planning and prevention or when handling an incident. Since the CBRN area has roots in multiple disciplines, each with its own evolving terminology, it may not be realistic to achieve unequivocal communication through a standardized vocabulary and joint definitions for words from common language. We suggest that a communication strategy should include awareness of alternative definitions and ontologies and the ability to talk and write without relying on the implicit knowledge underlying specialized jargon. Consequently, cross-disciplinary communication skills should be part of training of personnel in the CBRN field. In addition, a searchable repository of terms and definitions from relevant organizations and authorities would be a valuable addition to existing glossaries for improving awareness concerning bioterrorism prevention planning

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
    corecore