1,140 research outputs found

    Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms

    Get PDF
    Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the quantum trajectory method. A new method is developed for calculating the resonance fluorescence spectra from numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is responsible for quantum interference between the related transitions resulting in anomalous modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio

    Lattice Boltzmann modeling of dendritic growth in forced and natural convection

    Get PDF
    AbstractA two-dimensional (2D) coupled model is developed for the simulation of dendritic growth during alloy solidification in the presence of forced and natural convection. Instead of conventional continuum-based Navier–Stokes (NS) solvers, the present model adopts a kinetic-based lattice Boltzmann method (LBM), which describes flow dynamics by the evolution of distribution functions of moving pseudo-particles, for the numerical computations of flow dynamics as well as thermal and solutal transport. The dendritic growth is modeled using a solutal equilibrium approach previously proposed by Zhu and Stefanescu (ZS), in which the evolution of the solid/liquid interface is driven by the difference between the local equilibrium composition and the local actual liquid composition. The local equilibrium composition is calculated from the local temperature and curvature. The local temperature and actual liquid composition, controlled by both diffusion and convection, are obtained by solving the LB equations using the lattice Bhatnagar–Gross–Krook (LBGK) scheme. Detailed model validation is performed by comparing the simulations with analytical predictions, which demonstrates the quantitative capability of the proposed model. Furthermore, the convective dendritic growth features predicted by the present model are compared with those obtained from the Zhu–Stefanescu and Navier–Stokes (ZS–NS) model, in which the fluid flow is calculated using an NS solver. It is found that the evolution of the solid fraction of dendritic growth calculated by both models coincides well. However, the present model has the significant advantages of numerical stability and computational efficiency for the simulation of dendritic growth with melt convection

    Carrier dynamics and infrared-active phonons in c-axis oriented RuSr2_2GdCu2_2O8_8 film

    Full text link
    The conductivity spectra of c-axis oriented thin RuSr2_2GdCu2_2O8_8 film on SrTiO3_3 substrate, prepared by pulsed-laser deposition, are obtained from the analysis of the reflectivity spectra over broad frequency range and temperatures between 10 and 300 K. The free charge carriers are found to be strongly overdamped with their scattering rate (1.0 eV at room temperature) exceeding the plasma frequency (0.55 eV). Four phonon lines are identified in the experimental spectra and assigned to the specific oxygen related in-plane polarized vibrations based on the comparison with the results of a lattice dynamics shell model calculations.Comment: 3 pages, 4 figure

    Calculations on the Size Effects of Raman Intensities of Silicon Quantum Dots

    Get PDF
    Raman intensities of Si quantum dots (QDs) with up to 11,489 atoms (about 7.6 nm in diameter) for different scattering configurations are calculated. First, phonon modes in these QDs, including all vibration frequencies and vibration amplitudes, are calculated directly from the lattice dynamic matrix by using a microscopic valence force field model combined with the group theory. Then the Raman intensities of these quantum dots are calculated by using a bond-polarizability approximation. The size effects of the Raman intensity in these QDs are discussed in detail based on these calculations. The calculations are compared with the available experimental observation. We are expecting that our calculations can further stimulate more experimental measurements.Comment: 21 pages, 7 figure

    Cavity implementation of quantum interference in a Λ\Lambda-type atom

    Full text link
    A scheme for engineering quantum interference in a Λ\Lambda-type atom coupled to a frequency-tunable, single-mode cavity field with a pre-selected polarization at finite temperature is proposed. Interference-assisted population trapping, population inversions and probe gain at one sideband of the Autler-Townes spectrum are predicted for certain cavity resonant frequencies.Comment: 2 postscript figures are adde

    Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity

    Full text link
    We study the Autler-Townes spectrum of a V-type atom coupled to a single-mode, frequency-tunable cavity field at finite termperature, with a pre-selected polarization in the bad cavity limit, and show that, when the mean number of thermal photons N≫1N\gg 1 and the excited sublevel splitting is very large (the same order as the cavity linewidth), the probe gain may occur at either sideband of the doublet, depending on the cavity frequency, due to the cavity-induced interference.Comment: Minor changes are mad

    Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, \k40 is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the \k40-contamination levels of ∌10−10\sim 10^{-10} and ∌10−13\sim 10^{-13} g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are 8×10−138 \times 10^{-13} g/g and 3×10−173 \times 10^{-17} g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.Comment: 18 pages, 4 figures, 3 table

    Chirality in odd-AA nucleus 135^{135}Nd in particle rotor model

    Full text link
    A particle rotor model is developed which couples several valence protons and neutrons to a rigid triaxial rotor core. It is applied to investigating the chirality in odd-AA nucleus 135^{135}Nd with πh11/22⊗Μh11/2−1\pi h_{11/2}^2\otimes\nu h^{-1}_{11/2} configuration for the first time in a fully quantal approach. For the two chiral sister bands, the observed energies and the B(M1)B(M1) and B(E2)B(E2) values for the in-band as well as interband transitions are reproduced excellently. Root mean square values of the angular momentum components and their probability distributions are used for discussing in detail the chiral geometry of the aplanar rotation and its evolution with angular momentum. Chirality is found to change from a soft chiral vibration to nearly static chirality at spin I=39/2I=39/2 and back to another type of chiral vibration at higher spin.Comment: 16 pages, 5 figure

    Beyond single-photon localization at the edge of a Photonic Band Gap

    Get PDF
    We study spontaneous emission in an atomic ladder system, with both transitions coupled near-resonantly to the edge of a photonic band gap continuum. The problem is solved through a recently developed technique and leads to the formation of a ``two-photon+atom'' bound state with fractional population trapping in both upper states. In the long-time limit, the atom can be found excited in a superposition of the upper states and a ``direct'' two-photon process coexists with the stepwise one. The sensitivity of the effect to the particular form of the density of states is also explored.Comment: to appear in Physical Review
    • 

    corecore