715 research outputs found
What do they eat? A survey of eat-out habit of university students in Taiwan
[EN] Main purpose of this research is trying to understand food likeliness of
Taiwan college students, and probe whether these food are healthy. Three
survey steps are taken as: step 1, market survey for what kind of foods are
selling around the campuses; step 2, questionnaire investigation for students
food preference; step 3, analyzing whether these favorite foods are healthy or
not. The result shows: major consideration for students food selection are
“taste” and “price”; 63% of students are taking food or snacks late at night
at least once a week. Top three most favorite foods are: Taiwanese fries (yan
su ji), carbon grilled chicken and fried fish steaks. Quantities of these foods
are small, prices are low, and easy access from roadside food stands.
Problems of them are high calories, easy to accumulate free radical in
human body, plus insanitary food processing environment. They are harmful
to student health. We suggest Taiwan government take it seriouslyShih, K.; Wang, M.; Shih, H.; Lee, S.; Lin, T. (2020). What do they eat? A survey of eat-out habit of university students in Taiwan. Editorial Universitat Politècnica de València. 421-430. https://doi.org/10.4995/INN2019.2019.10562OCS42143
Leaf Extracts of Calocedrus formosana (Florin) Induce G2/M Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells
Calocedrus formosana (Florin) bark acetone/ethylacetate extracts are known to exert an antitumor effect on some human cancer cell lines, but the mechanism is yet to be defined. The aim of this study was to determine the effects of Florin leaf methanol extracts on the growth and apoptosis of human bladder cancer cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that the growth of these bladder cancer cells was potently inhibited by the Florin leaf extracts. The cell cycle of these extract-treated cells (TCCSUP cells) was arrested at the G2/M phase as determined by flow cytometry. Western blot analysis revealed the increases of cyclin B1 and Cdc2 kinase levels, alone with the decrease of phosphorylated Cdc2 kinase, after treating these cells with the extracts. An immunofluorescence assessment of β-tubulin showed decreased levels of polymerized tubulin in treated cells. However, the proteolytic cleavage of poly ADP-ribose polymerase and the activation of caspase-3/-8/-9 were all increased upon treatments of extracts. The concurrent increase of Bax and decrease of Bcl-2 levels indicated that the extracts could induce apoptosis in these treated cells. Taken together, these results suggest that the Florin leaf extracts may be an effective antibladder cancer agent
Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Among the radio-isotopes, \k40
is one of the most abundant and yet whose signatures are difficult to reject.
Procedures were devised to measure trace potassium concentrations in the
inorganic salt CsI as well as in organic liquid scintillator (LS) with
Accelerator Mass Spectrometry (AMS), giving, respectively, the
\k40-contamination levels of and g/g.
Measurement flexibilities and sensitivities are improved over conventional
methods. The projected limiting sensitivities if no excess of potassium signals
had been observed over background are g/g and g/g for the CsI and LS, respectively. Studies of the LS samples
indicate that the radioactive contaminations come mainly in the dye solutes,
while the base solvents are orders of magnitude cleaner. The work demonstrate
the possibilities of measuring naturally-occurring isotopes with the AMS
techniques.Comment: 18 pages, 4 figures, 3 table
On the Sunyaev-Zel'dovich effect from dark matter annihilation or decay in galaxy clusters
We revisit the prospects for detecting the Sunyaev Zel'dovich (SZ) effect
induced by dark matter (DM) annihilation or decay. We show that with standard
(or even extreme) assumptions for DM properties, the optical depth associated
with relativistic electrons injected from DM annihilation or decay is much
smaller than that associated with thermal electrons, when averaged over the
angular resolution of current and future experiments. For example, we find:
(depending on the assumptions) for \mchi
= 1 GeV and a density profile for a template cluster
located at 50 Mpc and observed within an angular resolution of , compared
to . This, together with a full spectral
analysis, enables us to demonstrate that, for a template cluster with generic
properties, the SZ effect due to DM annihilation or decay is far below the
sensitivity of the Planck satellite. This is at variance with previous claims
regarding heavier annihilating DM particles. Should DM be made of lighter
particles, the current constraints from 511 keV observations on the
annihilation cross section or decay rate still prevent a detectable SZ effect.
Finally, we show that spatial diffusion sets a core of a few kpc in the
electron distribution, even for very cuspy DM profiles, such that improving the
angular resolution of the instrument, e.g. with ALMA, does not necessarily
improve the detection potential. We provide useful analytical formulae
parameterized in terms of the DM mass, decay rate or annihilation cross section
and DM halo features, that allow quick estimates of the SZ effect induced by
any given candidate and any DM halo profile.Comment: 27 p, 6 figs, additional section on spatial diffusion effects.
Accepted for publication in JCA
Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Procedures were devised to measure
trace concentrations of I-129 in the inorganic salt CsI as well as in organic
liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to
improvement in sensitivities by several orders of magnitude over other methods.
No evidence of their existence in these materials were observed. Limits of < 6
X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI
and liquid scintillator, respectively, were derived.These are the first results
in a research program whose goals are to develop techniques to measure trace
radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass
Spectrometr
Feasibility of time-lapse AVO and AVOA analysis to monitor compaction-induced seismic anisotropy
Hydrocarbon reservoir production generally results in observable time-lapse physical property changes, such as velocity increases within a compacting reservoir. However, the physical property changes that lead to velocity changes can be difficult to isolate uniquely. Thus, integrated hydro-mechanical simulation, stress-sensitive rock physics models and time-lapse seismic modelling workflows can be employed to study the influence of velocity changes and induced seismic anisotropy due to reservoir compaction. We study the influence of reservoir compaction and compartmentalization on time-lapse seismic signatures for reflection amplitude variation with offset (AVO) and azimuth (AVOA). Specifically, the time-lapse AVO and AVOA responses are predicted for two models: a laterally homogeneous four-layer dipping model and a laterally heterogeneous graben structure reservoir model. Seismic reflection coefficients for different offsets and azimuths are calculated for compressional (P–P) and converted shear (P–S) waves using an anisotropic ray tracer as well as using approximate equations for AVO and AVOA. The simulations help assess the feasibility of using time-lapse AVO and AVOA signatures to monitor reservoir compartmentalization as well as evaluate induced stress anisotropy due to changes in the effective stress field. The results of this study indicate that time-lapse AVO and AVOA analysis can be applied as a potential means for qualitatively and semi-quantitatively linking azimuthal anisotropy changes caused by reservoir production to pressure/stress changes
Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics
We propose an interesting scheme for distributed orbital state quantum
cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic
ensembles which consist of identical three-level atoms are trapped in distant
cavities connected by a single-mode integrated optical star coupler. These
qubits can be manipulated through appropriate modulation of the coupling
constants between atomic ensemble and classical field, and the cavity decay can
be largely suppressed as the number of atoms in the ensemble qubits increases.
The fidelity of each cloned qubit can be obtained with analytic result. The
present scheme provides a new way to construct the quantum communication
network.Comment: 5 pages, 4 figure
Measurement of the near-threshold cross section using initial-state radiation
We report measurements of the exclusive cross section for , where or , in the center-of-mass energy range from the threshold to with initial-state radiation. The
analysis is based on a data sample collected with the Belle detector with an
integrated luminosity of 673 .Comment: Presented at EPS07 and LP07 conferences, published in PRD(RC
Measurement of K^+K^- production in two-photon collisions in the resonant-mass region
K^+K^- production in two-photon collisions has been studied using a large
data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB
asymmetric e^+e^- collider. We have measured the cross section for the process
gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and
found three new resonant structures in the energy region between 1.6 and 2.4
GeV. The angular differential cross sections have also been measured.Comment: 24 pages, 8 figures, to appear in Euro. Phys. Jour.
- …