1,510 research outputs found

    The Baryon asymmetry in the Standard Model with a low cut-off

    Get PDF
    We study the generation of the baryon asymmetry in a variant of the standard model, where the Higgs field is stabilized by a dimension-six interaction. Analyzing the one-loop potential, we find a strong first order electroweak phase transition for Higgs masses up to at least 170 GeV. Dimension-six operators induce also new sources of CP violation. We compute the baryon asymmetry in the WKB approximation. Novel source terms in the transport equations enhance the generated baryon asymmetry. For a wide range of parameters the model predicts a baryon asymmetry close to the observed value.Comment: 22 pages, latex, 6 figure

    Visualisation of alternating shielding gas flow in GTAW

    Get PDF
    The alternating shielding gas technique is a method of achieving transient arc characteristics during arc welding; however the complex flow that occurs through its use has not been investigated previously. A schlieren system was used to image density gradients that arise when alternating argon and helium shield gases, under varying flow parameters, with gas tungsten arc welding (GTAW). A theoretical analysis was carried out to determine the conditions under which the technique facilitates arc pulsing, in particular to avoid mixing the shield gases in the delivery pipe prior to the welding nozzle. At appropriate pulsing frequency and flow rates, a stable horizontal region of helium was obseved in the weld region, maintained in position by the denser argon from the preceding pulse. This higher than average mass fraction of helium when applying the shielding gases alternately, compare to a premixed gas with the same volume of argon and helium, increased the weld penetration by 13% on average, suggesting a modest improvement in heat transfer

    Time dependent neutrino billiards

    Full text link
    Quantum dynamica of a massless Dirac particle in time-dependent 1D box and circular billiard with time-dependent radius is studied. An exact analytical wave functions and eigenvalues are obtained for the case of linear time-dependence of the boundary position

    Directional wind measurement derived from elastic backscatter lidar data in real time

    Full text link
    The development of a capability to infer wind velocities simultaneously at a number of ranges along one direction in real time is described. The elastic backscatter lidar data used was obtained using the XM94 lidar, developed by Los Alamos National Laboratory for the US Army Chemical and Biological Detection Command. In some respects this problem is simpler than measuring wind velocities on meso-meteorological scales. Other requirements, particularly high temporal fidelity, have driven the development of faster software algorithms and suggested opportunities for the evolution of the hardware

    Design and analysis of DLS steel/composite thick-adhernd adhesive joints

    No full text
    The paper describes experimental and numerical techniques to study the structural design and behaviourof thick-adherend DLS joints that are based on steel /steel and steel/composites and epoxy adhesives, withfocus on long overlap joints. A standard fabrication method was followed to produce 60 specimens of various dimensions and materials

    Spatial repellents: from discovery and development to evidence based validation

    Get PDF
    International public health workers are challenged by a burden of arthropod-borne disease that remains elevated despite best efforts in control programmes. With this challenge comes the opportunity to develop novel vector control paradigms to guide product development and programme implementation. The role of vector behaviour modification in disease control was first highlighted several decades ago but has received limited attention within the public health community. This paper presents current evidence highlighting the value of sub-lethal agents, specifically spatial repellents, and their use in global health, and identifies the primary challenges towards establishing a clearly defined and recommended role for spatial repellent products in disease control

    Effective Theoretical Approach to Back Reaction of the Dynamical Casimir Effect in 1+1 Dimensions

    Get PDF
    We present an approach to studying the Casimir effects by means of the effective theory. An essential point of our approach is replacing the mirror separation into the size of space S^1 in the adiabatic approximation. It is natural to identify the size of space S^1 with the scale factor of the Robertson-Walker-type metric. This replacement simplifies the construction of a class of effective models to study the Casimir effects. To check the validity of this replacement we construct a model for a scalar field coupling to the two-dimensional gravity and calculate the Casimir effects by the effective action for the variable scale factor. Our effective action consists of the classical kinetic term of the mirror separation and the quantum correction derived by the path-integral method. The quantum correction naturally contains both the Casimir energy term and the back-reaction term of the dynamical Casimir effect, the latter of which is expressed by the conformal anomaly. The resultant effective action describes the dynamical vacuum pressure, i.e., the dynamical Casimir force. We confirm that the force depends on the relative velocity of the mirrors, and that it is always attractive and stronger than the static Casimir force within the adiabatic approximation.Comment: Published Version, 16 pages, LaTeX2e with graphics package, 1 figur

    Exact and Asymptotic Degeneracies of Small Black Holes

    Get PDF
    We examine the recently proposed relations between black hole entropy and the topological string in the context of type II/heterotic string dual models. We consider the degeneracies of perturbative heterotic BPS states. In several examples with N=4 and N=2 supersymmetry, we show that the macroscopic degeneracy of small black holes agrees to all orders with the microscopic degeneracy, but misses non-perturbative corrections which are computable on the heterotic side. Using these examples we refine the previous proposals and comment on their domain of validity as well as on the relevance of helicity supertraces.Comment: 35pp. harvmac b-mode; v2 is substantially rewritten and includes new results; v3 contains further clarifications, and some new results; v3: final version to match published versio
    corecore