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PHYSICAL REVIEW A, VOLUME 62, 022117

Effective theoretical approach to back reaction of the dynamical Casimir effect
in 1+1 dimensions

Yukinori Nagatarii
Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Kei Shigetomf
Department of Physics, Nagoya University, Nagoya 464-8602, Japan
(Received 29 April 1999; revised manuscript received 11 January 2000; published 20 July 2000

We present an approach to studying the Casimir effects by means of the effective theory. An essential point
of our approach is replacing the mirror separation into the size of spagethe adiabatic approximation. It
is natural to identify the size of spa@ with the scale factor of the Robertson-Walker-type metric. This
replacement simplifies the construction of a class of effective models to study the Casimir effects. To check the
validity of this replacement we construct a model for a scalar field coupling to the two-dimensional gravity and
calculate the Casimir effects by the effective action for the variable scale factor. Our effective action consists
of the classical kinetic term of the mirror separation and the quantum correction derived by the path-integral
method. The quantum correction naturally contains both the Casimir energy term and the back-reaction term of
the dynamical Casimir effect, the latter of which is expressed by the conformal anomaly. The resultant
effective action describes the dynamical vacuum pressure, i.e., the dynamical Casimir force. We confirm that
the force depends on the relative velocity of the mirrors, and that it is always attractive and stronger than the
static Casimir force within the adiabatic approximation.

PACS numbgs): 12.20.Ds, 03.65.Ca, 03.70k, 11.15.Kc

[. INTRODUCTION known example Fulling and Davies calculated the energy-
momentum tensor with the Moore’s equation, and showed
The Casimir effect originally suggested in 1948 has beerihe existence of the radiation from the moving mirrf8$
generally regarded as the contribution of a nontrivial geom- The dynamical Casimir effect occurs even in the adiabatic
etry on the vacuum fluctuations of quantum electromagneti@pproximation. Indeed, we can hardly handle the configura-
fields[1,2]. The change in the vacuum fluctuations caused byions except for the adiabatic deformations. Herdiabatic
the change of geometry appears as a shift of the vacuufeans the absence of mixings among the different energy
energy and a resulting vacuum pressure. For a standard elgvels of the system during the modulation of the mirror
ample, when we insert two perfectly conducting para||e|_separat|on. In other words the r_elatlveT velocity of.the mirrors
plates into the free spad®’, the plates are attracted towards IS much smaller than t'he velomt_y of light. Especially Sassa-
each other1], although being uncharged. This attractive roli et al. succeeded in evaluating the number of photons

. ' ' . produced by the adiabatic motion of the mirrors i3
force is experimentally confirmed by Sparnaay in 1938 dimensions[7]. They used the Bogolubov transformation

and recently more precise measurements have been prowdg%ong the creation and annihilation operators of photon in

[4]. . - _order to describe the particle production.

The dynamical Casimir effect suggests that the nonuni-- o gimilar phenomena of the particle production also
form accelerative relative motion of the boundari@er-  paye peen predicted in a variety of general-relativistic situa-
fecFIy <_:onduct|ng plates or _mwro)rsaxmtes the electromag- +ions [10-12. Such phenomena include the Hawking radia-
netic field and promotes virtual photons from the vacuumyjgn from black holeg11], the domain-wall activity in cos-
into real photon$5-9]. The works on the dynamical Casimir mology, and the high-speed collision of atomic nugte2)].
effect are pioneered by Moolf®] and have progressed by Although these phenomena are interesting, the dynamical
many author$6—9]. Moore studied the quantum theory of a Casimir effect has not yet been experimentally confirmed.
massless scalar field in the one-dimensional cavity bounded If moving mirrors create radiation, the mirrors experience
by moving mirrors, and evaluated the number of photonsa radiation-reaction force. Several authors have discussed
created by the exciting effect of the moving mirrors. In histhis subject within the adiabatic approximation. Dodonov
approach, the boundary condition on the scalar field is reet al. showed the existence of the additional negative fric-
placed with the simple equation, referred to as the Moore’sional force besides the static Casimir force in the one-
equation, which describes the constraint on the conformadimensional cavity by using Moore’s equatif8).
transformation of the coordinate. His approach has been The advantage of Moore’s approach is the properties: the
popularly used to investigate the problems relating to theheory does not need to possess the Hamiltonian or the La-
(1+1)-dimensional dynamical Casimir effect. For a well- grangian to describe the time evolution of the field. How-

ever, it seems difficult to apply Moore’s approach to study

the Casimir effects and its backreaction ir-2 or 1+3
*Electronic address: nagatani@yukawa.kyoto-u.ac.jp dimensions because the boundary condition of the one-
"Electronic address: shige@eken.phys.nagoya-u.ac.jp dimensional space plays a crucial role in his approach.
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In this paper we present an effective-theoretical approach p! s!
to studying the Casimir effects in11 dimensions. Our ap- O
proach, making use of the action, is considered to be appli- Boundary
cable to study the Casimir effects and its back reaction also
in the higher dimensions. In general the existence of the
moving boundariegmirrors) makes it difficult to construct H
the Hamiltonian or the Lagrangian describing the system,
since the relative motion of the boundarigsirrors) mixes
one energy level of the system with the others. However, we
note that the adiabatic motion allows us to neglect this Space
boundary effect: we do not need the boundaries. So we re- @ RxD' b) AX &'
place the spatial configuratioD® into S in the adiabatic
approximation. The motion of the cavity size is described by FIG. 1. Space times for the (11)-dimensional Casimir effects.
varying the radius oB* in time. Furthermore, we can natu- (a) One-dimensional space with two boundariese-dimensional
rally identify the size of spac8! with the scale factor of the disk D?) as the cavity between two moving “mirrors.” The scalar
Robertson-Walker-type metric. That is, the mirror separatiorfield satisfies the fixed boundary condition on the edgesThe
is described by the scale factor. The time evolution of thespaceSt which is adiabatically equivalent for the scalar field to the
scale factor can be regarded as the space-RRe&! with geometrical confi.guratioma). The periodic boundary condition is
gravity. For the sake of the replacement fr@hinto St, we ~ imposed on the field.
can study the Casimir effects from the viewpoint of the ef-
fective theory. The construction of the model with the re-Simir effects in our model is investigated, and the dynamical
placement is very simple and general, so that it is easy t§yacuum pressure is derived. Section VI is devoted to conclu-
app'y our approach to more rea"stic mode's in the higheﬁions and discussions. In AppendIXAthe conformal anomaly
dimensions by replacing the spabéXx R" into S'XR". is induced by means of the Fujikawa methidB] and in
To check the validity of our replacement, we construct aAPPendix B another path-integral calculation on the Casimir
scalar model and calculate the Casimir effects. As is usugnergy are shown.
our model makes use of the conformal symmetry property of
the two-dimensional theory of massless fields. In our model 1I. SCALAR MODEL FOR CASIMIR EFFECTS
of the cavity-system the classical action is constructed by the ]
classical kinetic term of the mirror separation and the Polya- 1he steps for constructing our model are as follows: For
kov action. The Polyakov action describes the massless sci1€ purpose of describing the Casimir effects in the one-
lar field minimally coupling to the two-dimensional gravity. dimensional cavity and the reaction received by the moving
The classical action is simple and general, so the structure ¢RiTors, we consider a massless scalar field in the one-
the model, e.g., symmetry, is easily visible. We carry out thedimensional finite space with two boundaries, i.e., one-
path integral on the scalar field, and obtain the effective acdimensional dislD* [see Fig. 1a)]. That is, we consider the
tion for the mirror separation. The calculation of the pathScalar field between two moving “mirrors.” The size bf*
performed. The effective action consists of the classical ki@ll the back reaction of the Casimir effects.
netic term of the mirror separation and the quantum correc- The motion of the boundaries generally mixes the energy
tion terms. The quantum correction takes a well-knownlévels of the system. However, when the motion of the mir-
form, which consists of the static Casimir energy term and©F Separation is adiabatic, ther(_a are no transitions among the
the conformal anomaly term. The conformal anomaly termenergy leveld7]. Because of this absence of the transitions
represents the back reaction of the dynamical Casimir effectVe can neglect the existence of the boundaries. This implies
The effective action finally leads to the dynamical vacuumthat each adiabatic Hamiltonian in the spaxkis the same
pressure depending on the relative velocity of the mirrors. @S that in the spac&" except for the overall factor. We
Our approach also gives an explanation for the origins oféplace the spatial configurati@" with S* in the adiabatic
the Casimir effects in terms of the effective theory: the Ca-2pproximatior{see Fig. 1b)]. In the spacs' the scalar field
simir effects are caused by the change of field configuratiofs required to satisfy the periodic boundary condition rather
in the vacuum instead of the existence of the boundaries. than the fixed boundary condition. Accordingly the energy
The paper is organized as follows. In Sec. Il we providelevels of the adiabatic oscillation modes in the replaced sys-
the general description of our model and the definition of thédeém are two times as those in the original system. We can
effective action. In spite of the simplicity of our model, the naturally regard the size d&" as the scale factor of the
calculation of the effective action is rather complicated. WeRobertson-Walker-type metric. We define the Robertson-
show the calculation in detail in the following two sections. Walker-type metric on the space-tinfex S*:
In Sec. lll the Casimir energy is shown to be derived from
the partition function part in the effective action. In Sec. IV ds’=—dt*+D?(t)dx* (0=x=a), 1)
the conformal anomaly part in the effective action is calcu-
lated, and obtained the back-reaction term of the dynamicakhere a dimensional constaats the standard space size and
Casimir effect. In Sec. V the back reaction of both the Ca-the scale factob(t) is the dimensionless magnification rate.

l—»Time
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It should be noticed that the mirror separation is replacegicks up the conformal anomaly as a Jacobian factor from
with the scale factor of the metric. the path-integral measure in the effective acti8n
With the help of this replacement, the model in the two- )
dimensional gravity is applicable to our model. The mirror _ir(g, ] : f 2 t iT[7,,]
: L ; e v=exg — 5| dXa(X X X) | Tuvl,
separation has finite reduced massand classically obeys : 2 o ); en(X)@n(x) :
free motion. Then the classical action of our model to de- 9

scribe the system consists of both the classical kinetic term ) )
for the scale factor and the Polyakov action where the parameter of the conformal transformatigr) is
chosen asa(x)=—3InC(7). {¢,(X)} is a complete set

1 m ., 1 which consists of the eigenfunctions of the Hamilton{aee
S[D"f’]zﬁf dt a"D() + 5 Seoyakol 9,:0(D), 41, Appendix A. The first exponential factor in Eq9) is the
(2)  conformal anomaly, and the second factor is the partition
function for the free scalar field in the spasé
where
lll. CASIMIR ENERGY IN SPACE s!

1 1
Spolyakol 9v s 1= — Ef d*xv—g 5970, ¢9,6. (3 We will see thatl'[ »,,] induces the Casimir energy as

the vacuum energy by evaluating the partition function for
This Polyakov action is invariant under both the general cothe free scalar field. Let us calculate the Euclidean partition

ordinate transformation and the Weyl transformation. Thisfunction
property is referred to as the conformal symmetry. We can
always rewrite the metric into the conformal flat form by the
general coordinate transformation: 1
= f Do ex;{ -

” 2 @ 11
27Tf_ocdx fo dx §a¢ dp

where we have defined the imaginary time variatlesi »,
where we have introduced a new coordinatesuch that and have used the Euclidean inner produgtdde
d»=dt/D(t) and C(5)=D?t(#)]. After performing the =6""d,¢$d,¢. Since the free Lagrangian is quadratic in
Weyl transformation gw_@fl( 7)d,.,, we have the terms ofé, this integration can be performed formally, and
D(t)-independent flat metric obtains

ZEE e_FE[ 77/.LV]

., (10

ds’= —dt?+D?(t)dx*= — C(n)(d5*—dx*) =g, dx“dx",
(4)

— 2 2 __ v
ds’=—dy"+dx=7,,dx"dx" © |an=—%Tr|n(aZ)=—%f d2(x|In ?[x).  (11)
This implies that any deformation of the space size does not
affect the classical action. But once we quantize the scaldn the momentum representation the spatial component of
field, the conformal anomaly appears in general. The quarthe momentum is discretized in the forms@/a) for arbi-
tum effects lead to the motion of the scale factor, i.e., therary integersn due to the compactness of the space,
motion of the mirror separation.

We use a path-integral formulation to evaluate the motion 11 , [dk1 S Infk? )
of D(t) as the back reaction of the Casimir effects. We use InZeg=->5 (277)2J d XJ 2ras In[k*+(2mn/a)?]
the background field method, in which the metric is treated
as a classical field and the scalar field is quantized. We ob- 1
tain the effective action fob (t) by integrating out the scalar =— 2m)? f d?X fpares (12

field. The effective action for the metri€¢{ D], is given by

where fy,,¢ IS @ bare Euclidean free-energy density for the

eiSeff[DIEf De'SIP. 4] (6)  massless field. Since the integration okenakesf ;. diver-
gent, we introduce magd of the scalar field to regularize
fpare [14], then the integrand is changed as

1 m . 1
_ il 22 et
_eXp('sz dtz @’ D) +i3 I19,,(D)] |, In[k2-+ (27rn/a) 2] — In[k?+ (27n/a)2+ M2].  (13)
7
@) Employing the indefinite integral dfl, we can write
eir[g,uV]Ef DqﬁeiSPolyako&g,u,wd’]. (8) 11 dk 1
fbare:_J' Py _f dMZZ 2 2 > (14
2) 2w a n k>+(2mwn/a)’+M
In order to calculate the effective action for the evolving _ _
metric (4), we perform the conformal transformation on the The sum oven can be performed in the expression
effective action(8) from the evolving metriq4) to the flat 1¢ dk -
metric (5) guvqezagpﬂ/:c_l(n)g/xvz Nuv- By means of f :_J _f 1+2 —hawy 1
the Fujikawa method13] this conformal transformation bare= 2 | 24 dox nZl © ’ 19
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where we have employekl and w,= JC+M? as indepen- IV. CONFORMAL ANOMALY IN SPACE-TIME RXS!
%zr;]tti[t);rameters instead of uskigndM, and have used the In this section the effective action for the metfig,,, |
is derived by evaluating the conformal anomaly in the space-
® time RXS. The conformal anomaly is formally expressed
— T othmb= ~| 1+ 2 by the first exponent in the right-hand side of E@). This
n==wn?+h2 b b e2m_ 1 anomaly part appears when the space-Sizis varying with

. time. Then the anomaly part is considered to describe the
o —2mnb back-reactional terms of the dynamical Casimir effect. In the
b 1422 e : Euclidean space time with the metrits®= p(x?)[ (dx})?
+ (dx?)?] the Jacobian induced from the conformal transfor-
(16) mationg,,,—€?*g,,, is

Since the first term of Eq15) indicates the contribution of

infinite volume of space time and clearly diverges, we renor- _ lpa (=, t

malize it as a cosmological term. The second term is relevant 9= &Xf ~ 5 dx dCa(x?) 2, @f (%) @nk(X)

for the free.—energy density, namely, renormalized free- (23
energy density,

where{¢, ()} is a complete set of the eigenfunctions of

fronc=— — nZl - e nawy (17)  the Hamiltonian operator
With the identity - 11 1 ~
H=—2 "7 Hn 0 =N kenk(X). (24
1 (= naw,)?
g Nawk= —f dt tl’zexp{ —t— ( T J . (18 . . _ _ . _
Vato This Jacobian will be evaluated by using the eigenfunctions

¢en k(X) which satisfy the periodic boundary condition in the
we perform the integration ovds; and obtain spaceSt.
The factorj (X)EEn’kgog’k(X)gon’k(X) in the Jacobiari23)
has a divergence due to the infinite degrees of freedom of the
space-time points. In order to regularize this divergence we
introduce a cutoff parametdi and insert the cutoff function
HereK ,(2) is the modified Bessel function exp(—\;/M?) into j(x):

« 1z ”foc dt z
D=313) Jopm® T w)
)\2

The free-energy density for the massless field is obtained by - — 2 /M2
taking the limitM —0. In this limit we can use the property 100= MITmnE eni)e” M o (X)
of the Bessel functionK_4(z)~1/z for small z, and the
free-energy densityl9) becomes

reno - E K (naM)- (19)

(20) j(x)sn2k @1 ) @n(X)

" 2
= lim >, ¢f, 06" gn ().
M o0 MK
=——, (21 ,
When we takep, (x) = (1/ya)e'e!@m/ax" a5 the eigen-

. o L . .. .._function, w in
The Euclidean partition function is derived by substituting unction, we obta

Eq. (21) into Eq. (12). After performing the spatial integra-

tion, and going back to the Minkowski space with=i 7, “ (= dk 1 k?+ (2mn/a)?
we obtain J(X)_NII'T; nZ_m w27 N om2| p
1 (= 1 1 .
T[7,,]= InZ—— At (22) ik 1 1 1)
v 2 12 aD(t) +2—=0,—=+—=dy—= (29
Jo Ve e e

where we have used the relatidm=dt/D(t). It should be

noticed that—1/(12aD) is the Casimir energy in+1 di- Here we should note thg(x) is independent ok®. Rede-
mensions, and is caused not by the existence of the boundafining k— Mk, we can write Eq(25) with a dimensionless
but by the compactness of the space. parametek as

022117-4
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k2+(277n/Ma)2 p o2 & 1( 2mn
j(x?)= I|m— Z —ex _— F(p)= > oexg—o| ——=
Moo @ n==c 2m 2p P aaMa ns- 2\ Map
k1 1 1 1 ,1 55277n2127rn4
T Eh =t — = —=|. (26) 35778
Mo Vo 2M* Vb “Vp Mayp/ 96\ Mayp
H : . . p 1( 2mn
e second and the third terms in the exponent in (E6) G(p)= > exg -z ——=
are understood as operators, e.g., Vv2mMa n=-w 2 Ma\/;
- . X[ 1, 1(2mn
ap —sts5il —=] |-
i ==———1+0. 27) 8 24\ Mma\p
o\ 207 p
Under the limit onM we obtain
After expanding the integrand in termsMf 1, the ordemvi? pfz 1 p 11
terms in Eq.(26) under integrating ovek and summation lim F(p)= 57 12 lim G(p)=-— 5 12 (29
over n, denoted as?(M?), diverge with the limit onM. M—e M—eo &

. o) 2 . .
Notme thatEn?wexq—(an/Mza) /2p] g|ves.the contrlb_u— with the help of the definition of the Jacobifunction and its
tion of O(M). The part ofO(M<), however, is renormaliz-

able by adding a bare cosmological term to the starting Laproperty,

grangian[13,15. In this expansion the terms in E¢26) +o0

including only one operatorik/M)(1/y/p) d,(1/\/p) become o(u,7)= >, exp2miul +imrl?),

O(M) because of the existence of the dumping factor, exp =
(—K?2p). The part ofO(M) in Eq. (26) becomes zero for )
symmetric integration on the odd function. Then the next 0(0i7')=i6(0|—)

reading terms of2(M°) in Eq. (26) remain under the limit ’ Jro\ T

on M. The terms of®(M?) in Eq. (26) consist of two kinds

of contributions. One comes from the operator (172 In order to evaluate the effective acti¢®) with the Eu-

X (11\p)d5(1/\p) in Eq. (26), becoming clidean metric ds?=p(x?)[(dx')?+ (dx?)?], we have to
choose the parameter of the conformal transformation as
a(x?)=—In p(x®). Then the Jacobian fact¢23) becomes

1 o m—1
Ma

—o0

f dk 1 |<2+(27Tn/|v|a)2
700277 m=1 mI 2p

1 (a (=
n3elpl- o= | @ | dp o (30

X

m3 m2 m -3 2 m2 —2 42
——+ = 54| 0 (02p)?— —p 25p |, . . . N
6 4 24)° 4 Now we continue back to the Minkowski Jacobian with
time evolving metric(4):

and another comes from the two operators of

(ik/M) (L) 32( 1), being -ma[o]_— - f dtl—zﬁ (31
i = (ik)? where we have used the relations between the Euclidean pa-
Ma . :Z_ f_wzﬂ 2 T rameters and the Minkowski ones®=i7, p(x?)=C(7),

and we note thatl »=dt/D(t),C(#)=D(t)?,fdx=a.

k2+(27-rn/Ma)2 m=2/m* m? m On the other hand, the well-known Polyakov-Liouville
X e T 3 action [15], which is the conformal anomaly in the space-
time R?, brings the same result as EQ1), shown as fol-
4 ) m m? m _3.2 lows. The Polyakov-Liouville action is given by the general
Xp Hdp)—|—=——t+5|p "d5p form:
6 4 12
After performing the integration oves; j(x?) becomes SpL=— @j d’xy—g
j(x?)=lim [F(p)(dop)%+G(p)dap], (29 X [ d?x'—g'R(x)O Y(x,x")R(x"), (32
M— o
where R(x) is the Ricci curvature. With the form of the
whereF (p) andG(p) are given by metric, ds>= — C(7)(d7?—dx?),
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1 (a m « 1). k1
SpL=——J dxf dnCIinCOInC, (33 ————|D?- — —=E, (39
967 0

where E is an integral constant. The left-hand side is the

i Hamiltonian of this system, thus is the energy of this sys-
t'orLS’d”:dt/D”Et) andC(z) :.stgt)z’ \(/jvez come 5’;"2" to tge tem. Here it should be noticed that the semiclassical condi-
ropertson-yialkerype metrids — m(tt)_* D(O7X, and 401 m=1/D(t) and the adiabatic conditiod (t)<1 lead to
' the validity condition|E|<m. Combining the equation of
.. motion (38) and the description of the ener39), we obtain
R(X)= — ] InC=2—D (34) the mutual dynamical force between the mirr¢sund-
D arie9, namelythe dynamical Casimir forge

and the Ricci curvature iR(x)=—[1InC. With the rela-

52
Here we usd 1=g"d,d,= — (1/C)af7, and the relatiory,, Fan=mD=— x i &
=Dé,. By substituting Eq(34) into Eq.(33), Sp, is modi- " 24 p2 1 w1
fied as 12mD
1 (a .. 14 2E
24 p2 Kk 1\%
This result is consistent with the well-known fact that the 1= 12mD

regulated trace of the stress tensor is proportional to the cur- ] o )

vature. After the partial integration, E5) is found to be The dynam!cal Casimir force depends on phe relative veloc-

the same as our resuf1), which is the case oRx St. ity of the mirrors. When the reduced masss much larger
Finally, combining the partition functiori22) and the than the scalek and 1D, or equivalently, the velocit is

Jacobian factof31) gives the effective action for the space regarded as zero, the dynamical Casimir fof46) is ap-

sizeD(t) as proximately equal to the static one:
1 1 Foo- d k1),  « 1 41
P[D]=T[g,,]=7InJ+ Iz s "55| 2aD)  2apr Y
1 (e 1D2 11 The ratio of the dynamical forcegy, to the static oné=aric
=—| dt| —=—+ ==/, (36) IS given by
2m) o 12D 12D ,
FanlFame 2 10 X L ey
where we have redefineeD—D. dniTstaticT e 1T 12mD o
~12mD
V. BACK REACTION OF THE DYNAMICAL CASIMIR (42)
EFFECT

Here theD? term in the expansion is known as the negative-
The semiclassical effective action for the motion of thefrictional-like-force[8]. SinceD?=0, we conclude that the
boundaries is obtained as dynamical forceFq, is always attractive and stronger than
_ the static ond- g, for D> («/12)(1m).
1 m., kD? «k1
Sett= ﬂf dt ED - ﬂﬁ‘f’ 54D (37 VI. CONCLUSION AND DISCUSSIONS
In this paper we presented an effective theoretical ap-
wherex is the number of species of scalar fields. The seconghroach to studying the Casimir effects in+1-dimensions
and third terms come from the effective acti(86). In the  within the adiabatic approximation. The point of our inves-
first term we adopted the same redefinitaB—D as thatin ~ tigation was the replacement of the spatial configuration:
Eq. (36). In this action the second term is the back-reaction® ' —S". We constructed the effective action of the scalar
term of the dynamical Casimir effect, and the third term isfield model, and checked the validity of this replacement. In
the static Casimir energy. This action leads to the equation g?ur model the quantum correction to the classical kinetic

motion given by term of the mirror separation was calculated by the path-
integral formalism. The resultant quantum correction natu-
1\ «[D\2 « 1 rally contains both the ordinary Casimir energy term and the
(m———)D:——(—) - (39 back-reaction term of the dynamical Casimir effect. The

12D 24\ D 24 p2

semiclassical effective actio(87) was constructed of the
classical kinetic term of the mirror separation and these re-
This equation is integrable, and the resulting relation is giversultant quantum corrections. From the acti@@), we have

by obtained the dynamical vacuum pressure. The pregsiyre
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namical Casimir forcgincludes the back-reactional force of the mass scale of the mirronsis much greater than the scale
the dynamical Casimir effect. The dynamical Casimir forceof the Casimir energy-D ~ . On the other hand, if the mir-
was confirmed to be attractive and always stronger than theor separatiorD (t) is smaller than the inverse of the mirror
static Casimir force. The dynamical Casimir force dependgnassm’l, our result(40) shows that the dynamical Casimir
on the relative velocity of the mirrors, and it is reduced to theforce Fg,, becomes repulsive. However, our semiclassical
static one when the velocity goes to zero. treatment becomes unsuitable at that time. When the motion
The perturbative expansion of the resultant dynamical Caof the mirror separation obeys the quantum mechanics, this
simir force (42) includes the term for the negative frictional repulsive force might be realized. We will leave this problem
force which agrees with the result of Dodoneval. [8].  t0 subsequent developments.
Although this means that our result is not entirely new, our
approach reproduces the reliable result, thus it can be said ACKNOWLEDGMENTS
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us to compare our model with others. For example, our 665 ' '
model has a correspondence to the Callan, Giddings, Harvey, '
and StromingerlCGHS model which describes the two-

dimensional dilaton black holgl6]. The back reaction dis-

cussed in this paper is comparable to the back reaction of the |n this appendix we briefly explain the derivation of the
Hawking radiation from the CGHS black hojé7]. In the  expressior(9) from the definition of the effective actiof®).
CGHS model the Hawking radiation is represented by therhis derivation is based on the evaluation of the conformal
conformal anomaly in the energy-momentum tenEb8],  anomaly by the Fujikawa methdd3]. In order to perform
and the back reaction of the radiation, which is described byne path integration of Eq8), we make a Wick rotation by
the Polyakov-Liouville action, appears as the decrease in thgytroducing an imaginary time variabié=i ». Then the Eu-

b|aCk-hO|e maS§l7] Qur C|aSSica| kinetiC term in the Semi- C"dean metric Corresponding to the Minkowski 0@ be_
classical effective actio(B87) corresponds to the kinetic term comes

of the dilaton in the CGHS model.
Some comments are in order. ds?=p(x®)[(dx})%+ (dx?)?]. (A1)
The quantum correctioi36) does not include the third _ _ o

derivative of the dynamical variable. This looks different The Euclidean effective action is

from the results evaluated by Fulling and Davjé$. They

APPENDIX A: FUJIKAWA METHOD

calculated the energy-momentum tensor ifl+1)- e_FE[Q,,w]:f D¢ exp{—ij d?x\g nga ¢5V¢}-
dimensional system of two relatively moving mirrd®] as 2m 2 .
well as that in(1+1)-dimensional system of a single non- (A2)

uniformly accelerating mirror [6,18]. Both energy- introducingd=4g d chanaing th )
momentum tensors include the third derivative of the dy-E;]y intro _UC'”?d’: 9o anh ¢ anglngljt e measurep '”';0
namical variables. Our result for the system of two mirrorst"€ invariant form under the general coordinate transforma-

does not need to coincide with their result for the system ofion D¢, Eq. (A2) becomes
a single mirror since the forms of the conformal anomaly for

two systems are different. The result for the system of a e‘FE[ng]=J D ex _if dlea ¢ ) ¢

single mirror is due to the Unruh-like effect rather than due 27 2\ Jp) \\Vp| |

to the dynamical Casimir effect. On the other hand, the (A3)

energy-momentum tensor derived from E86) coincides

with their result for the system of two mirrors under a certainHere we have used a notatié ddp=d1¢p d1p+ do¢b d .

transformation of the dynamical variable. We perform a mode expansion of the figldx) in terms of
In the semiclassical effective acti@87), the contribution  a complete sefe,(x)}:

from the dynamical Casimir effect generated a negative-

definite kinetic term of the mirror separation. Such a kinetic

term also appeared in the analysis of the CGHS mptiél

The following point should be noted: there is a positive-

definite classical kinetic term, and the negative-definite ternwhere we have chosep,(x) as an eigenfunction of the

gives only a slight correction. This holds in the case whereHamiltonian operator,

&(x>=§ anqon<x)z§ (x|n)ay,, (A4)
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11 ated by using the point-splitting ansatz and the Feynman’s
H= Hon(x)=\20,(x).  (A5)  renormalization prescription. Employing the ansatz of point
2 \/_ \/_ splitting to (10),
Here ¢,(x) satisfies the normallzat|olfq X@m(X) @n(X) - _J Do eXF{——f d2x fdz 1
=6mn- NOow we note that the measufeg is expressed by

the mode coefficienta,, as

X P(X)AXX") (")

D?&:E[ D;b(x)=[de1(x|n>]];[ dan=]'n[ da,. (A6)
(B1)

1
) =ex;{——TrlnA,
Under the Weyl transformatloglw—>e2“(x)g the mode 2

coefficients of the fieldp(x), a,, are transformed as an where Jd2x=[7_dx?[3dx}, and A(x,x")=8""3,. 1 53)(x

infinitesimal form, —x"). The two-dimensional Dirac delta function in the inte-
gral representation is
~ ~ o , +oo
¢(X)H¢ (X)_; an()DI"I(X)! 5(2)(X—X’)— z —ik(x2—x’2)ei(2wn/a)(x1—x’1).

n=-—w

(B2)

1
a'=a,+ >, = | d*>a(x)e(x X)a Chma . . .
noon % 2f @(X)@n(X) m(X)an= E nmeme Now we come back to Minkowski space and introduce mass
(A7) M of the scalar field to regularize the integral,

Then the measure is transformed as

d?x

n X
i 2 (277)2

1
(2)(y—x") =
O7(X x)a

D?b'=fn[ da,:=[detcnm>]f|[ day

=exr{TrIn

:ex[{ + %f dzxa(X)Z (PL(X)‘Pn(X)

X 2 i(27n/a)(x—x")

1
Bt 5 f d?x a(x)d(x)@m(x))

H da

e ik(z=7")
B3)
f JZW —k%+(27n/a)?+ M2 (

With thei e prescription, we perform the integral in the com-

plex k plane, applying the residue theorem,
This gives the Jacobian of the conformal transformation. By

Dp.  (A8)

the Weyl transformation chosen(x)=—3Inp(x) for ¢ dk e M)
—'¢'="¢/\/p, the effective actiofA3) becomes 2T — K2+ (2mn/a)®+M?~ie
2 T J2ania) M2

xg @h(X) @n(X)

(B4)

—i
0(n' — ,
o0 7])—2\/(2wn/a)+M2

XJ D?;S’ex;{ - if dle(;;y afﬁ’}, wheree>0 andd(x) is the step function. Here we define the
2w 2 new parameterw?=(2mn/a)?+M?, and replace the inte-
(A9)  gral into the following form:

where the second factor equals to the partition function of M2 1 | de.= (B5)
the free scalar field in the flat space time. Finally, we can 2 ’—(an/a)2+M2 - @Wn= @n-
arrive at our destinatiof®) from the descriptiofA9) by the
inverse Wick rotation. Then we take the massless lirMt— 0 and perform the sum-
mation,
APPENDIX B: ANOTHER PATH-INTEGRAL o0 %
4 4 T
CALCULATION OF THE CASIMIR ENERGY 2 wy=— E n=—:¢7-1)=— 3 (B6)
n=—o a n=1 a a

In this appendix we give another partition-functional deri- .
vation of the Casimir energy by means of the point-splittingAt last we arrive at the same form of E@Q2),
ansatz and the Feynman prescription: In the path-integral 1 " 1 1

1
method the partition function part i(®) can be also evalu- - - _
p part i®) ~InZ=—— dtlZaD(t).

(B7)
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