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Effective theoretical approach to back reaction of the dynamical Casimir effect
in 1¿1 dimensions
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We present an approach to studying the Casimir effects by means of the effective theory. An essential point
of our approach is replacing the mirror separation into the size of spaceS1 in the adiabatic approximation. It
is natural to identify the size of spaceS1 with the scale factor of the Robertson-Walker-type metric. This
replacement simplifies the construction of a class of effective models to study the Casimir effects. To check the
validity of this replacement we construct a model for a scalar field coupling to the two-dimensional gravity and
calculate the Casimir effects by the effective action for the variable scale factor. Our effective action consists
of the classical kinetic term of the mirror separation and the quantum correction derived by the path-integral
method. The quantum correction naturally contains both the Casimir energy term and the back-reaction term of
the dynamical Casimir effect, the latter of which is expressed by the conformal anomaly. The resultant
effective action describes the dynamical vacuum pressure, i.e., the dynamical Casimir force. We confirm that
the force depends on the relative velocity of the mirrors, and that it is always attractive and stronger than the
static Casimir force within the adiabatic approximation.

PACS number~s!: 12.20.Ds, 03.65.Ca, 03.70.1k, 11.15.Kc

I. INTRODUCTION

The Casimir effect originally suggested in 1948 has been
generally regarded as the contribution of a nontrivial geom-
etry on the vacuum fluctuations of quantum electromagnetic
fields@1,2#. The change in the vacuum fluctuations caused by
the change of geometry appears as a shift of the vacuum
energy and a resulting vacuum pressure. For a standard ex-
ample, when we insert two perfectly conducting parallel
plates into the free spaceR3, the plates are attracted towards
each other@1#, although being uncharged. This attractive
force is experimentally confirmed by Sparnaay in 1958@3#
and recently more precise measurements have been provided
@4#.

The dynamical Casimir effect suggests that the nonuni-
form accelerative relative motion of the boundaries~per-
fectly conducting plates or mirrors! excites the electromag-
netic field and promotes virtual photons from the vacuum
into real photons@5–9#. The works on the dynamical Casimir
effect are pioneered by Moore@5# and have progressed by
many authors@6–9#. Moore studied the quantum theory of a
massless scalar field in the one-dimensional cavity bounded
by moving mirrors, and evaluated the number of photons
created by the exciting effect of the moving mirrors. In his
approach, the boundary condition on the scalar field is re-
placed with the simple equation, referred to as the Moore’s
equation, which describes the constraint on the conformal
transformation of the coordinate. His approach has been
popularly used to investigate the problems relating to the
(111)-dimensional dynamical Casimir effect. For a well-

known example Fulling and Davies calculated the energy-
momentum tensor with the Moore’s equation, and showed
the existence of the radiation from the moving mirrors@6#.

The dynamical Casimir effect occurs even in the adiabatic
approximation. Indeed, we can hardly handle the configura-
tions except for the adiabatic deformations. Here,adiabatic
means the absence of mixings among the different energy
levels of the system during the modulation of the mirror
separation. In other words the relative velocity of the mirrors
is much smaller than the velocity of light. Especially Sassa-
roli et al. succeeded in evaluating the number of photons
produced by the adiabatic motion of the mirrors in 113
dimensions@7#. They used the Bogolubov transformation
among the creation and annihilation operators of photon in
order to describe the particle production.

The similar phenomena of the particle production also
have been predicted in a variety of general-relativistic situa-
tions @10–12#. Such phenomena include the Hawking radia-
tion from black holes@11#, the domain-wall activity in cos-
mology, and the high-speed collision of atomic nuclei@12#.
Although these phenomena are interesting, the dynamical
Casimir effect has not yet been experimentally confirmed.

If moving mirrors create radiation, the mirrors experience
a radiation-reaction force. Several authors have discussed
this subject within the adiabatic approximation. Dodonov
et al. showed the existence of the additional negative fric-
tional force besides the static Casimir force in the one-
dimensional cavity by using Moore’s equation@8#.

The advantage of Moore’s approach is the properties: the
theory does not need to possess the Hamiltonian or the La-
grangian to describe the time evolution of the field. How-
ever, it seems difficult to apply Moore’s approach to study
the Casimir effects and its backreaction in 112 or 113
dimensions because the boundary condition of the one-
dimensional space plays a crucial role in his approach.
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In this paper we present an effective-theoretical approach
to studying the Casimir effects in 111 dimensions. Our ap-
proach, making use of the action, is considered to be appli-
cable to study the Casimir effects and its back reaction also
in the higher dimensions. In general the existence of the
moving boundaries~mirrors! makes it difficult to construct
the Hamiltonian or the Lagrangian describing the system,
since the relative motion of the boundaries~mirrors! mixes
one energy level of the system with the others. However, we
note that the adiabatic motion allows us to neglect this
boundary effect: we do not need the boundaries. So we re-
place the spatial configurationD1 into S1 in the adiabatic
approximation. The motion of the cavity size is described by
varying the radius ofS1 in time. Furthermore, we can natu-
rally identify the size of spaceS1 with the scale factor of the
Robertson-Walker-type metric. That is, the mirror separation
is described by the scale factor. The time evolution of the
scale factor can be regarded as the space-timeR3S1 with
gravity. For the sake of the replacement fromD1 into S1, we
can study the Casimir effects from the viewpoint of the ef-
fective theory. The construction of the model with the re-
placement is very simple and general, so that it is easy to
apply our approach to more realistic models in the higher
dimensions by replacing the spaceD13Rn into S13Rn.

To check the validity of our replacement, we construct a
scalar model and calculate the Casimir effects. As is usual
our model makes use of the conformal symmetry property of
the two-dimensional theory of massless fields. In our model
of the cavity-system the classical action is constructed by the
classical kinetic term of the mirror separation and the Polya-
kov action. The Polyakov action describes the massless sca-
lar field minimally coupling to the two-dimensional gravity.
The classical action is simple and general, so the structure of
the model, e.g., symmetry, is easily visible. We carry out the
path integral on the scalar field, and obtain the effective ac-
tion for the mirror separation. The calculation of the path
integral is rather complicated; however, it can be exactly
performed. The effective action consists of the classical ki-
netic term of the mirror separation and the quantum correc-
tion terms. The quantum correction takes a well-known
form, which consists of the static Casimir energy term and
the conformal anomaly term. The conformal anomaly term
represents the back reaction of the dynamical Casimir effect.
The effective action finally leads to the dynamical vacuum
pressure depending on the relative velocity of the mirrors.

Our approach also gives an explanation for the origins of
the Casimir effects in terms of the effective theory: the Ca-
simir effects are caused by the change of field configuration
in the vacuum instead of the existence of the boundaries.

The paper is organized as follows. In Sec. II we provide
the general description of our model and the definition of the
effective action. In spite of the simplicity of our model, the
calculation of the effective action is rather complicated. We
show the calculation in detail in the following two sections.
In Sec. III the Casimir energy is shown to be derived from
the partition function part in the effective action. In Sec. IV
the conformal anomaly part in the effective action is calcu-
lated, and obtained the back-reaction term of the dynamical
Casimir effect. In Sec. V the back reaction of both the Ca-

simir effects in our model is investigated, and the dynamical
vacuum pressure is derived. Section VI is devoted to conclu-
sions and discussions. In Appendix A the conformal anomaly
is induced by means of the Fujikawa method@13# and in
Appendix B another path-integral calculation on the Casimir
energy are shown.

II. SCALAR MODEL FOR CASIMIR EFFECTS

The steps for constructing our model are as follows: For
the purpose of describing the Casimir effects in the one-
dimensional cavity and the reaction received by the moving
mirrors, we consider a massless scalar field in the one-
dimensional finite space with two boundaries, i.e., one-
dimensional diskD1 @see Fig. 1~a!#. That is, we consider the
scalar field between two moving ‘‘mirrors.’’ The size ofD1

is a dynamical variable, and we assume that the size receives
all the back reaction of the Casimir effects.

The motion of the boundaries generally mixes the energy
levels of the system. However, when the motion of the mir-
ror separation is adiabatic, there are no transitions among the
energy levels@7#. Because of this absence of the transitions
we can neglect the existence of the boundaries. This implies
that each adiabatic Hamiltonian in the spaceD1 is the same
as that in the spaceS1 except for the overall factor. We
replace the spatial configurationD1 with S1 in the adiabatic
approximation@see Fig. 1~b!#. In the spaceS1 the scalar field
is required to satisfy the periodic boundary condition rather
than the fixed boundary condition. Accordingly the energy
levels of the adiabatic oscillation modes in the replaced sys-
tem are two times as those in the original system. We can
naturally regard the size ofS1 as the scale factor of the
Robertson-Walker-type metric. We define the Robertson-
Walker-type metric on the space-timeR3S1:

ds252dt21D2~ t !dx2 ~0<x<a!, ~1!

where a dimensional constanta is the standard space size and
the scale factorD(t) is the dimensionless magnification rate.

FIG. 1. Space times for the (111)-dimensional Casimir effects.
~a! One-dimensional space with two boundaries~one-dimensional
disk D1) as the cavity between two moving ‘‘mirrors.’’ The scalar
field satisfies the fixed boundary condition on the edges.~b! The
spaceS1 which is adiabatically equivalent for the scalar field to the
geometrical configuration~a!. The periodic boundary condition is
imposed on the field.
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It should be noticed that the mirror separation is replaced
with the scale factor of the metric.

With the help of this replacement, the model in the two-
dimensional gravity is applicable to our model. The mirror
separation has finite reduced massm and classically obeys
free motion. Then the classical action of our model to de-
scribe the system consists of both the classical kinetic term
for the scale factor and the Polyakov action,

S@D,f#[
1

2pE dt
m

2
a2Ḋ2~ t !1

1

2
SPolyakov@gmn~D !,f#,

~2!

where

SPolyakov@gmn ,f#52
1

2pE d2xA2g
1

2
gmn]mf]nf. ~3!

This Polyakov action is invariant under both the general co-
ordinate transformation and the Weyl transformation. This
property is referred to as the conformal symmetry. We can
always rewrite the metric into the conformal flat form by the
general coordinate transformation:

ds252dt21D2~ t !dx252C~h!~dh22dx2!5gmndxmdxn,
~4!

where we have introduced a new coordinateh such that
dh[dt/D(t) and C(h)[D2@ t(h)#. After performing the
Weyl transformation gmn→C21(h)gmn , we have the
D(t)-independent flat metric

ds252dh21dx25hmndxmdxn. ~5!

This implies that any deformation of the space size does not
affect the classical action. But once we quantize the scalar
field, the conformal anomaly appears in general. The quan-
tum effects lead to the motion of the scale factor, i.e., the
motion of the mirror separation.

We use a path-integral formulation to evaluate the motion
of D(t) as the back reaction of the Casimir effects. We use
the background field method, in which the metric is treated
as a classical field and the scalar field is quantized. We ob-
tain the effective action forD(t) by integrating out the scalar
field. The effective action for the metric,Se f f@D#, is given by

eiSe f f[D][E DfeiS[D,f] ~6!

5expS i
1

2pE dt
m

2
a2Ḋ2(t)1 i

1

2
G[gmn~D !] D ,

~7!

eiG[gmn][E DfeiSPolyakov[gmn ,f] . ~8!

In order to calculate the effective action for the evolving
metric ~4!, we perform the conformal transformation on the
effective action~8! from the evolving metric~4! to the flat
metric ~5!: gmn→e2agmn5C21(h)gmn5hmn . By means of
the Fujikawa method@13# this conformal transformation

picks up the conformal anomaly as a Jacobian factor from
the path-integral measure in the effective action~8!:

eiG[gmn]5expF2
i

2E d2xa~x!(
n

wn
†~x!wn~x!GeiG[hmn] ,

~9!

where the parameter of the conformal transformationa(x) is
chosen asa(x)52 1

2 ln C(h). $wn(x)% is a complete set
which consists of the eigenfunctions of the Hamiltonian~see
Appendix A!. The first exponential factor in Eq.~9! is the
conformal anomaly, and the second factor is the partition
function for the free scalar field in the spaceS1.

III. CASIMIR ENERGY IN SPACE S1

We will see thatG@hmn# induces the Casimir energy as
the vacuum energy by evaluating the partition function for
the free scalar field. Let us calculate the Euclidean partition
function

ZE[e2GE[hmn]

5E Df expF2
1

2pE2`

`

dx2E
0

a

dx1
1

2
]f ]fG , ~10!

where we have defined the imaginary time variablex2[ ih,
and have used the Euclidean inner product]f]f
[dmn]mf]nf. Since the free Lagrangian is quadratic in
terms off, this integration can be performed formally, and
obtains

ln ZE52
1

2
Tr ln~]2!52

1

2E d2x^xu ln ]2ux&. ~11!

In the momentum representation the spatial component of
the momentum is discretized in the form (2pn/a) for arbi-
trary integersn due to the compactness of the space,

ln ZE52
1

2

1

~2p!2E d2xE dk

2p

1

a (
n

ln@k21~2pn/a!2#

[2
1

~2p!2E d2x fbare, ~12!

where f bare is a bare Euclidean free-energy density for the
massless field. Since the integration overk makesf barediver-
gent, we introduce massM of the scalar field to regularize
f bare @14#, then the integrand is changed as

ln@k21~2pn/a!2#→ ln@k21~2pn/a!21M2#. ~13!

Employing the indefinite integral ofM, we can write

f bare5
1

2E dk

2p

1

aE dM2(
n

1

k21~2pn/a!21M2
. ~14!

The sum overn can be performed in the expression

f bare5
1

2E dk

2pE dvkS 112(
n51

`

e2navkD , ~15!
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where we have employedk and vk[Ak21M2 as indepen-
dent parameters instead of usingk andM, and have used the
identity

(
n52`

`
1

n21b2
5

p

b
cothpb5

p

b F11
2

e2pb21
G

5
p

b F112(
n51

`

e22pnbG .

~16!

Since the first term of Eq.~15! indicates the contribution of
infinite volume of space time and clearly diverges, we renor-
malize it as a cosmological term. The second term is relevant
for the free-energy density, namely, renormalized free-
energy density,

f reno[2
1

aE dk

2p (
n51

`
1

n
e2navk. ~17!

With the identity

e2navk5
1

Ap
E

0

`

dt t21/2expF2t2
~navk!

2

4t G , ~18!

we perform the integration overk, and obtain

f reno52
M

pa (
n51

`
1

n
K21~naM!. ~19!

HereKn(z) is the modified Bessel function

Kn~z!5
1

2 S z

2D nE
0

` dt

tn11
expF2t2

z2

4t G . ~20!

The free-energy density for the massless field is obtained by
taking the limitM→0. In this limit we can use the property
of the Bessel function,K21(z)'1/z for small z, and the
free-energy density~19! becomes

f reno52
1

pa2 (
n51

`
1

n2
52

p

6a2
. ~21!

The Euclidean partition function is derived by substituting
Eq. ~21! into Eq. ~12!. After performing the spatial integra-
tion, and going back to the Minkowski space withx25 ih,
we obtain

G@hmn#5
1

i
ln Z5

1

2pE2`

`

dt
1

12

1

aD~ t !
, ~22!

where we have used the relationdh5dt/D(t). It should be
noticed that21/(12aD) is the Casimir energy in 111 di-
mensions, and is caused not by the existence of the boundary
but by the compactness of the space.

IV. CONFORMAL ANOMALY IN SPACE-TIME RÃS1

In this section the effective action for the metricG@gmn#
is derived by evaluating the conformal anomaly in the space-
time R3S1. The conformal anomaly is formally expressed
by the first exponent in the right-hand side of Eq.~9!. This
anomaly part appears when the space-sizeS1 is varying with
time. Then the anomaly part is considered to describe the
back-reactional terms of the dynamical Casimir effect. In the
Euclidean space time with the metricds25r(x2)@(dx1)2

1(dx2)2# the Jacobian induced from the conformal transfor-
mationgmn→e2agmn is

JE[expF2
1

2E0

a

dx1E
2`

`

dx2a~x2!(
n,k

wn,k
† ~x!wn,k~x!G ,

~23!

where $wn,k(x)% is a complete set of the eigenfunctions of
the Hamiltonian operator

Ĥ52
1

2

1

Ar
]]

1

Ar
, Ĥwn,k~x!5ln,k

2 wn,k~x!. ~24!

This Jacobian will be evaluated by using the eigenfunctions
wn,k(x) which satisfy the periodic boundary condition in the
spaceS1.

The factorj (x)[(n,kwn,k
† (x)wn,k(x) in the Jacobian~23!

has a divergence due to the infinite degrees of freedom of the
space-time points. In order to regularize this divergence we
introduce a cutoff parameterM and insert the cutoff function
exp(2ln,k

2 /M2) into j (x):

j ~x![(
n,k

wn,k
† ~x!wn,k~x!

→ j ~x![ lim
M→`

(
n,k

wn,k
† ~x!e2ln,k

2 /M2
wn,k~x!

5 lim
M→`

(
n,k

wn,k
† ~x!e2Ĥ/M2

wn,k~x!.

When we takewn,k(x)5(1/Aa)eikx2
ei (2pn/a)x1

as the eigen-
function, we obtain

j ~x!5 lim
M→`

1

a (
n52`

` E
2`

` dk

2p
expF 1

2M2 S 2
k21~2pn/a!2

r

12
ik

Ar
]2

1

Ar
1

1

Ar
]2

2 1

Ar
D G . ~25!

Here we should note thatj (x) is independent ofx1. Rede-
fining k→Mk, we can write Eq.~25! with a dimensionless
parameterk as
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j ~x2!5 lim
M→`

M

a (
n52`

` E
2`

` dk

2p
expF2

k21~2pn/Ma!2

2r

1
ik

M

1

Ar
]2

1

Ar
1

1

2M2

1

Ar
]2

2 1

Ar
G . ~26!

The second and the third terms in the exponent in Eq.~26!
are understood as operators, e.g.,

1

Ar
]

1

Ar
52

]r

2r2
1

1

r
]. ~27!

After expanding the integrand in terms ofM 21, the orderM2

terms in Eq.~26! under integrating overk and summation
over n, denoted asO(M2), diverge with the limit onM.
Notice that(n52`

` exp@2(2pn/Ma)2/2r# gives the contribu-
tion of O(M ). The part ofO(M2), however, is renormaliz-
able by adding a bare cosmological term to the starting La-
grangian@13,15#. In this expansion the terms in Eq.~26!
including only one operator (ik/M )(1/Ar)]2(1/Ar) become
O(M ) because of the existence of the dumping factor, exp
(2k2/2r). The part ofO(M ) in Eq. ~26! becomes zero for
symmetric integration on the odd function. Then the next
reading terms ofO(M0) in Eq. ~26! remain under the limit
on M. The terms ofO(M0) in Eq. ~26! consist of two kinds
of contributions. One comes from the operator (1/2M2)
3(1/Ar)]2

2(1/Ar) in Eq. ~26!, becoming

1

Ma (
n52`

` E
2`

` dk

2p (
m51

`
1

m! F2
k21~2pn/Ma!2

2r Gm21

3H S m3

6
1

m2

4
2

m

24D r23~]2r!22
m2

4
r22]2

2rJ ,

and another comes from the two operators of
( ik/M )(1/Ar)]2(1/Ar), being

1

Ma (
n52`

` E
2`

` dk

2p (
m51

`
~ ik !2

m!

3F2
k21~2pn/Ma!2

2r Gm22H S m4

8
2

m2

4
1

m

8 D
3r24~]2r!22S m3

6
2

m2

4
1

m

12D r23]2
2rJ .

After performing the integration overk, j (x2) becomes

j ~x2!5 lim
M→`

@F~r!~]2r!21G~r!]2
2r#, ~28!

whereF(r) andG(r) are given by

F~r![
r25/2

A2pMa
(

n52`

`

expF2
1

2 S 2pn

MaAr
D 2G

3H 5

32
2

5

48S 2pn

MaAr
D 2

1
1

96S 2pn

MaAr
D 4J ,

G~r![
r23/2

A2pMa
(

n52`

`

expF2
1

2 S 2pn

MaAr
D 2G

3H 2
1

8
1

1

24S 2pn

MaAr
D 2J .

Under the limit onM we obtain

lim
M→`

F~r!5
r22

2p

1

12
, lim

M→`

G~r!52
r21

2p

1

12
, ~29!

with the help of the definition of the Jacobiu function and its
property,

u~u,t![ (
l 52`

1`

exp~2p iul 1 ipt l 2!,

u~0,i t!5
1

At
uS 0,

i

t D .

In order to evaluate the effective action~9! with the Eu-
clidean metric ds25r(x2)@(dx1)21(dx2)2#, we have to
choose the parameter of the conformal transformation as
a(x2)52 1

2 ln r(x2). Then the Jacobian factor~23! becomes

ln JE@r#5
1

96pE0

a

dx1E
2`

`

dx2r22~]2r!2. ~30!

Now we continue back to the Minkowski Jacobian with
time evolving metric~4!:

1

i
ln J@D#52

1

2pE dt
a

12

Ḋ2

D
, ~31!

where we have used the relations between the Euclidean pa-
rameters and the Minkowski ones:x25 ih, r(x2)5C(h),
and we note thatdh5dt/D(t),C(h)5D(t)2,*dx5a.

On the other hand, the well-known Polyakov-Liouville
action @15#, which is the conformal anomaly in the space-
time R2, brings the same result as Eq.~31!, shown as fol-
lows. The Polyakov-Liouville action is given by the general
form:

SPL52
1

96pE d2xA2g

3E d2x8A2g8R~x!h21~x,x8!R~x8!, ~32!

where R(x) is the Ricci curvature. With the form of the
metric,ds252C(h)(dh22dx2),
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SPL52
1

96pE0

a

dxE dh C ln Ch ln C, ~33!

and the Ricci curvature isR(x)52h ln C. With the rela-
tions,dh5dt/D(t) andC(h)5D(t)2, we come back to the
Robertson-Walker-type metricds252dt21D(t)2dx2, and
obtain the Ricci curvature in terms ofD(t):

R~x!52h ln C5
2D̈

D
. ~34!

Here we useh5gmn]m]n52(1/C)]h
2 , and the relation]h

5D] t . By substituting Eq.~34! into Eq. ~33!, SPL is modi-
fied as

SPL5
1

24pE0

a

dxE dt D̈ ln D. ~35!

This result is consistent with the well-known fact that the
regulated trace of the stress tensor is proportional to the cur-
vature. After the partial integration, Eq.~35! is found to be
the same as our result~31!, which is the case ofR3S1.

Finally, combining the partition function~22! and the
Jacobian factor~31! gives the effective action for the space
sizeD(t) as

G@D#[G@gmn#5
1

i
ln J1

1

i
ln Z

5
1

2pE2`

`

dtS 2
1

12

Ḋ2

D
1

1

12

1

D
D , ~36!

where we have redefinedaD→D.

V. BACK REACTION OF THE DYNAMICAL CASIMIR
EFFECT

The semiclassical effective action for the motion of the
boundaries is obtained as

Se f f5
1

2pE dtS m

2
Ḋ22

k

24

Ḋ2

D
1

k

24

1

D
D , ~37!

wherek is the number of species of scalar fields. The second
and third terms come from the effective action~36!. In the
first term we adopted the same redefinitionaD→D as that in
Eq. ~36!. In this action the second term is the back-reaction
term of the dynamical Casimir effect, and the third term is
the static Casimir energy. This action leads to the equation of
motion given by

S m2
k

12

1

D D D̈52
k

24
S Ḋ

D
D 2

2
k

24

1

D2
. ~38!

This equation is integrable, and the resulting relation is given
by

S m

2
2

k

24

1

D D Ḋ22
k

24

1

D
5E, ~39!

where E is an integral constant. The left-hand side is the
Hamiltonian of this system, thusE is the energy of this sys-
tem. Here it should be noticed that the semiclassical condi-
tion m@1/D(t) and the adiabatic conditionḊ(t)!1 lead to
the validity conditionuEu!m. Combining the equation of
motion~38! and the description of the energy~39!, we obtain
the mutual dynamical force between the mirrors~bound-
aries!, namelythe dynamical Casimir force,

Fdyn[mD̈52
k

24

1

D2

11Ḋ2

12
k

12

1

mD

52
k

24

1

D2

11
2E

m

S 12
k

12

1

mDD 2 . ~40!

The dynamical Casimir force depends on the relative veloc-
ity of the mirrors. When the reduced massm is much larger
than the scalesE and 1/D, or equivalently, the velocityḊ is
regarded as zero, the dynamical Casimir force~40! is ap-
proximately equal to the static one:

Fstatic[2
]

]D S 2
k

24

1

D D52
k

24

1

D2
. ~41!

The ratio of the dynamical forceFdyn to the static oneFstatic
is given by

Fdyn/Fstatic5
11Ḋ2

12
k

12

1

mD

511
k

12

1

mD
1Ḋ21•••.

~42!

Here theḊ2 term in the expansion is known as the negative-
frictional-like-force @8#. SinceḊ2>0, we conclude that the
dynamical forceFdyn is always attractive and stronger than
the static oneFstatic for D.(k/12)(1/m).

VI. CONCLUSION AND DISCUSSIONS

In this paper we presented an effective theoretical ap-
proach to studying the Casimir effects in 111-dimensions
within the adiabatic approximation. The point of our inves-
tigation was the replacement of the spatial configuration:
D1→S1. We constructed the effective action of the scalar
field model, and checked the validity of this replacement. In
our model the quantum correction to the classical kinetic
term of the mirror separation was calculated by the path-
integral formalism. The resultant quantum correction natu-
rally contains both the ordinary Casimir energy term and the
back-reaction term of the dynamical Casimir effect. The
semiclassical effective action~37! was constructed of the
classical kinetic term of the mirror separation and these re-
sultant quantum corrections. From the action~37!, we have
obtained the dynamical vacuum pressure. The pressure~dy-
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namical Casimir force! includes the back-reactional force of
the dynamical Casimir effect. The dynamical Casimir force
was confirmed to be attractive and always stronger than the
static Casimir force. The dynamical Casimir force depends
on the relative velocity of the mirrors, and it is reduced to the
static one when the velocity goes to zero.

The perturbative expansion of the resultant dynamical Ca-
simir force ~42! includes the term for the negative frictional
force which agrees with the result of Dodonovet al. @8#.
Although this means that our result is not entirely new, our
approach reproduces the reliable result, thus it can be said
that we have presented a unique effective theoretical ap-
proach to the problem.

Several easier derivations of the static Casimir energy in
the Hamiltonian formulation are known, but our method
needs a more complex calculation to obtain the Casimir en-
ergy. Our approach, however, describes both the static and
the dynamical Casimir effects together, and is applicable to
more realistic models in the higher dimensions by replacing
the spaceD13Rn into S13Rn.

Furthermore, the existence of the action makes it easy for
us to compare our model with others. For example, our
model has a correspondence to the Callan, Giddings, Harvey,
and Strominger~CGHS! model which describes the two-
dimensional dilaton black hole@16#. The back reaction dis-
cussed in this paper is comparable to the back reaction of the
Hawking radiation from the CGHS black hole@17#. In the
CGHS model the Hawking radiation is represented by the
conformal anomaly in the energy-momentum tensor@16#,
and the back reaction of the radiation, which is described by
the Polyakov-Liouville action, appears as the decrease in the
black-hole mass@17#. Our classical kinetic term in the semi-
classical effective action~37! corresponds to the kinetic term
of the dilaton in the CGHS model.

Some comments are in order.
The quantum correction~36! does not include the third

derivative of the dynamical variable. This looks different
from the results evaluated by Fulling and Davies@6#. They
calculated the energy-momentum tensor in~111!-
dimensional system of two relatively moving mirrors@6# as
well as that in~111!-dimensional system of a single non-
uniformly accelerating mirror @6,18#. Both energy-
momentum tensors include the third derivative of the dy-
namical variables. Our result for the system of two mirrors
does not need to coincide with their result for the system of
a single mirror since the forms of the conformal anomaly for
two systems are different. The result for the system of a
single mirror is due to the Unruh-like effect rather than due
to the dynamical Casimir effect. On the other hand, the
energy-momentum tensor derived from Eq.~36! coincides
with their result for the system of two mirrors under a certain
transformation of the dynamical variable.

In the semiclassical effective action~37!, the contribution
from the dynamical Casimir effect generated a negative-
definite kinetic term of the mirror separation. Such a kinetic
term also appeared in the analysis of the CGHS model@17#.
The following point should be noted: there is a positive-
definite classical kinetic term, and the negative-definite term
gives only a slight correction. This holds in the case where

the mass scale of the mirrorsm is much greater than the scale
of the Casimir energy;D21. On the other hand, if the mir-
ror separationD(t) is smaller than the inverse of the mirror
massm21, our result~40! shows that the dynamical Casimir
force Fdyn becomes repulsive. However, our semiclassical
treatment becomes unsuitable at that time. When the motion
of the mirror separation obeys the quantum mechanics, this
repulsive force might be realized. We will leave this problem
to subsequent developments.
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APPENDIX A: FUJIKAWA METHOD

In this appendix we briefly explain the derivation of the
expression~9! from the definition of the effective action~8!.
This derivation is based on the evaluation of the conformal
anomaly by the Fujikawa method@13#. In order to perform
the path integration of Eq.~8!, we make a Wick rotation by
introducing an imaginary time variablex2[ ih. Then the Eu-
clidean metric corresponding to the Minkowski one~4! be-
comes

ds25r~x2!@~dx1!21~dx2!2#. ~A1!

The Euclidean effective action is

e2GE[gmn]5E Df expF2
1

2pE d2xAg
1

2
gmn]mf ]nfG .

~A2!

By introducingf̃[A4 gf and changing the measureDf into
the invariant form under the general coordinate transforma-
tion Df̃, Eq. ~A2! becomes

e2GE[gmn]5E Df̃ expF2
1

2pE d2x
1

2
]S f̃

Ar
D ]S f̃

Ar
D G .

~A3!

Here we have used a notation]f ]f[]1f ]1f1]2f ]2f.
We perform a mode expansion of the fieldf̃(x) in terms of
a complete set$wn(x)%:

f̃~x!5(
n

anwn~x![(
n

^xun&an , ~A4!

where we have chosenwn(x) as an eigenfunction of the
Hamiltonian operator,
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Ĥ52
1

2

1

Ar
]]

1

Ar
, Ĥwn~x!5ln

2wn~x!. ~A5!

Here wn(x) satisfies the normalization*d2xwm
† (x)wn(x)

5dmn . Now we note that the measureDf̃ is expressed by
the mode coefficientsan as

Df̃5)
x

Df̃~x!5@det̂ xun&#)
n

dan5)
n

dan . ~A6!

Under the Weyl transformationgmn→e2a(x)gmn the mode
coefficients of the fieldf̃(x), an , are transformed as an
infinitesimal form,

f̃~x!→f̃8~x![(
n

an8wn~x!,

an85an1(
m

1

2E d2xa~x!wn
†~x!wm~x!am[(

m
Cnmam .

~A7!

Then the measure is transformed as

Df̃85)
n

dan85@det~Cnm!#)
l

dal

5expFTr lnS dnm1
1

2E d2x a~x!wn
†~x!wm~x! D G)

l
dal

5expF1
1

2E d2xa~x!(
n

wn
†~x!wn~x!G Df̃. ~A8!

This gives the Jacobian of the conformal transformation. By
the Weyl transformation chosena(x)52 1

2 ln r(x) for f̃

→f̃85f̃/Ar, the effective action~A3! becomes

e2GE[gmn]5expF2
1

2E d2x a~x!

3(
n

wn
†~x! wn~x!G

3E Df̃8expF2
1

2pE d2x
1

2
]f̃8 ]f̃8G ,

~A9!

where the second factor equals to the partition function of
the free scalar field in the flat space time. Finally, we can
arrive at our destination~9! from the description~A9! by the
inverse Wick rotation.

APPENDIX B: ANOTHER PATH-INTEGRAL
CALCULATION OF THE CASIMIR ENERGY

In this appendix we give another partition-functional deri-
vation of the Casimir energy by means of the point-splitting
ansatz and the Feynman prescription: In the path-integral
method the partition function part in~9! can be also evalu-

ated by using the point-splitting ansatz and the Feynman’s
renormalization prescription. Employing the ansatz of point
splitting to ~10!,

ZE5E Df expF2
1

2pE d2x
1

2pE d2x8
1

2

3f~x!A~x,x8!f~x8!G
5expF2

1

2
Tr ln AG , ~B1!

where *d2x[*2`
` dx2*0

adx1, and A(x,x8)[dmn]m]n8d
(2)(x

2x8). The two-dimensional Dirac delta function in the inte-
gral representation is

d (2)~x2x8!5
1

a (
n52`

1` E dk

2p
e2 ik(x22x82)ei (2pn/a)(x12x81).

~B2!

Now we come back to Minkowski space and introduce mass
M of the scalar field to regularize the integral,

1

i
ln Z52

1

2

1

~2p!2E d2xE d2x8d (2)~x2x8!
1

a

3(
n

ei (2pn/a)(x2x8)

3E dM2E dk

2p

e2 ik(h2h8)

2k21~2pn/a!21M2
. ~B3!

With the i e prescription, we perform the integral in the com-
plex k plane, applying the residue theorem,

E dk

2p

e2 ik(h2h8)

2k21~2pn/a!21M22 i e

5u~h2h8!
i

2A~2pn/a!1M2

1u~h82h!
2 i

22A~2pn/a!1M2
, ~B4!

wheree.0 andu(x) is the step function. Here we define the
new parameter,vn

2[(2pn/a)21M2, and replace the inte-
gral into the following form:

E dM2
1

2A~2pn/a!21M2
5E dvn5vn . ~B5!

Then we take the massless limitM→0 and perform the sum-
mation,

(
n52`

1`

vn5
4p

a (
n51

`

n5
4p

a
z~21!52

p

3a
. ~B6!

At last we arrive at the same form of Eq.~22!,

1

i
ln Z5

1

2pE2`

`

dt
1

12

1

aD~ t !
. ~B7!
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