8 research outputs found

    AdS pp-waves

    Get PDF
    We obtain the pp-waves of D=5 and D=4 gauged supergravities supported by U(1)3U(1)^3 and U(1)4U(1)^4 gauge field strengths respectively. We show that generically these solutions preserve 1/4 of the supersymmetry, but supernumerary supersymmetry can arise for appropriately constrained harmonic functions associated with the pp-waves. In particular it implies that the solutions are independent of the light-cone coordinate x+x^+. We also obtain the pp-waves in the Freedman-Schwarz model.Comment: Latex, 19 pages, minor changes, to appear in JHE

    Further results on non-diagonal Bianchi type III vacuum metrics

    Full text link
    We present the derivation, for these vacuum metrics, of the Painlev\'e VI equation first obtained by Christodoulakis and Terzis, from the field equations for both minkowskian and euclidean signatures. This allows a complete discussion and the precise connection with some old results due to Kinnersley. The hyperk\"ahler metrics are shown to belong to the Multi-Centre class and for the cases exhibiting an integrable geodesic flow the relevant Killing tensors are given. We conclude by the proof that for the Bianchi B family, excluding type III, there are no hyperk\"ahler metrics.Comment: 21 pages, no figure

    Rigid upper bounds for the angular momentum and centre of mass of non-singular asymptotically anti-de Sitter space-times

    Full text link
    We prove upper bounds on angular momentum and centre of mass in terms of the Hamiltonian mass and cosmological constant for non-singular asymptotically anti-de Sitter initial data sets satisfying the dominant energy condition. We work in all space-dimensions larger than or equal to three, and allow a large class of asymptotic backgrounds, with spherical and non-spherical conformal infinities; in the latter case, a spin-structure compatibility condition is imposed. We give a large class of non-trivial examples saturating the inequality. We analyse exhaustively the borderline case in space-time dimension four: for spherical cross-sections of Scri, equality together with completeness occurs only in anti-de Sitter space-time. On the other hand, in the toroidal case, regular non-trivial initial data sets saturating the bound exist.Comment: improvements in the presentation; some statements correcte

    Bending AdS Waves with New Massive Gravity

    Get PDF
    We study AdS-waves in the three-dimensional new theory of massive gravity recently proposed by Bergshoeff, Hohm, and Townsend. The general configuration of this type is derived and shown to exhibit different branches, with different asymptotic behaviors. In particular, for the special fine tuning m2=±1/(2l2)m^2=\pm1/(2l^2), solutions with logarithmic fall-off arise, while in the range m2>−1/(2l2)m^2>-1/(2l^2), spacetimes with Schrodinger isometry group are admitted as solutions. Solutions that are asymptotically AdS3_3, both for Brown-Henneaux and for the weakened boundary conditions, are also identified. The metric function that characterizes the profile of the AdS-wave behaves as a massive excitation on the spacetime, with an effective mass given by meff2=m2−1/(2l2)m_{eff}^2=m^2-1/(2l^2). For the critical value m2=−1/(2l2)m^2=-1/(2l^2), the value of the effective mass precisely saturates the Breitenlohner-Freedman bound for the AdS3_3 space where the wave is propagating on. The analogies with the AdS-wave solutions of topologically massive gravity are also discussed. Besides, we consider the coupling of both massive deformations to Einstein gravity and find the exact configurations for the complete theory, discussing all the different branches exhaustively. One of the effects of introducing the Chern-Simons gravitational term is that of breaking the degeneracy in the effective mass of the generic modes of pure New Massive Gravity, producing a fine structure due to parity violation. Another effect is that the zoo of exact logarithmic specimens becomes considerably enlarged.Comment: 9 pages. Minor typos correcte

    Black strings in AdS_5

    Get PDF
    We present non-extremal magnetic black string solutions in five-dimensional gauged supergravity. The conformal infinity is the product of time and S^1xS_h, where S_h denotes a compact Riemann surface of genus h. The construction is based on both analytical and numerical techniques. We compute the holographic stress tensor, the Euclidean action and the conserved charges of the solutions and show that the latter satisfy a Smarr-type formula. The phase structure is determined in the canonical ensemble, and it is shown that there is a first order phase transition from small to large black strings, which disappears above a certain critical magnetic charge that is obtained numerically. For another particular value of the magnetic charge, that corresponds to a twisting of the dual super Yang-Mills theory, the conformal anomalies coming from the background curvature and those arising from the coupling to external gauge fields exactly cancel. We also obtain supersymmetric solutions describing waves propagating on extremal BPS magnetic black strings, and show that they possess a Siklos-Virasoro reparametrization invariance.Comment: 40 pages, 7 figures, JHEP3. v2: minor corrections, 2 references added. v3: typos in holographic stress tensor corrected, 3 references adde
    corecore