89 research outputs found

    Quarkonium spectroscopy and perturbative QCD: massive quark-loop effects

    Get PDF
    We study the spectra of the bottomonium and B_c states within perturbative QCD up to order alpha_s^4. The O(Lambda_QCD) renormalon cancellation between the static potential and the pole mass is performed in the epsilon-expansion scheme. We extend our previous analysis by including the (dominant) effects of non-zero charm-quark mass in loops up to the next-to-leading non-vanishing order epsilon^3. We fix the b-quark MSbar mass mˉbmbMSˉ(mbMSˉ)\bar{m}_b \equiv m_b^{\bar{\rm MS}}(m_b^{\bar{\rm MS}}) on Upsilon(1S) and compute the higher levels. The effect of the charm mass decreases mˉb\bar{m}_b by about 11 MeV and increases the n=2 and n=3 levels by about 70--100 MeV and 240--280 MeV, respectively. We provide an extensive quantitative analysis. The size of non-perturbative and higher order contributions is discussed by comparing the obtained predictions with the experimental data. An agreement of the perturbative predictions and the experimental data depends crucially on the precise value (inside the present error) of alpha_s(M_Z). We obtain mbMSˉ(mbMSˉ)=4190±20±25±3 MeVm_b^{\bar{\rm MS}}(m_b^{\bar{\rm MS}}) = 4190 \pm 20 \pm 25 \pm 3 ~ {\rm MeV}.Comment: 33 pages, 21 figures; v2: Abstract modified; Table7 (summary of errors) added; Version to appear in Phys.Rev.

    Radiative Correction to the Dirichlet Casimir Energy for λϕ4\lambda\phi^{4} Theory in Two Spatial Dimensions

    Get PDF
    In this paper, we calculate the next to the leading order Casimir energy for real massive and massless scalar fields within λϕ4\lambda\phi^{4} theory, confined between two parallel plates with the Dirichlet boundary condition in two spatial dimensions. Our results are finite in both cases, in sharp contrast to the infinite result reported previously for the massless case. In this paper we use a renormalization procedure introduced earlier, which naturally incorporates the boundary conditions. As a result our radiative correction term is different from the previously calculated value. We further use a regularization procedure which help us to obtain the finite results without resorting to any analytic continuation techniques.Comment: 8 pages, 3 figure

    On a general class of brane-world black holes

    Full text link
    We use the general solution to the trace of the 4-dimensional Einstein equations for static, spherically symmetric configurations as a basis for finding a general class of black hole (BH) metrics, containing one arbitrary function gtt=A(r)g_{tt} = A(r) which vanishes at some r=rh>0r = r_h > 0, the horizon radius. Under certain reasonable restrictions, BH metrics are found with or without matter and, depending on the boundary conditions, can be asymptotically flat or have any other prescribed large rr behaviour. It is shown that this procedure generically leads to families of solutions unifying non-extremal globally regular BHs with a Kerr-like global structure, extremal BHs and symmetric wormholes. Horizons in space-times with zero scalar curvature are shown to be either simple or double. The same is generically true for horizons inside a matter distribution, but in special cases there can be horizons of any order. A few simple examples are discussed. A natural application of the above results is the brane world concept, in which the trace of the 4D gravity equations is the only unambiguous equation for the 4D metric, and its solutions can be continued into the 5D bulk according to the embedding theorems.Comment: 9 pages, revtex

    I-odd sector of the Klebanov-Strassler theory

    Full text link
    The Klebanov-Strassler background is invariant under the Z_2 symmetry I, which acts by exchanging the bi-fundamental fields A and B, accompanied by the charge conjugation. We study the background perturbations in the I-odd sector and find an exhaustive list of bosonic states invariant under the global SU(2)*SU(2) symmetry. In addition to the scalars identified in an earlier publication arXiv:0712.4404 we find 7 families of massive states of spin 1. Together with the spin 0 states they form 3 families of massive vector multiplets and 2 families of massive gravitino multiplets, containing a vector, a pseudovector and fermions of spin 3/2 and 1/2. In the conformal Klebanov-Witten case these I-odd particles belong to the N=1 superconformal Vector Multiplet I and Gravitino Multiplets II and IV. The operators dual to the I-odd singlet sector include those without bi-fundamental fields making an interesting connection with the pure N=1 SYM theory. We calculate the mass spectrum of the corresponding glueballs numerically and discuss possible applications of our results.Comment: 34 pages, 3 figures, 2 table

    Charged Higgs Boson Production in Bottom-Gluon Fusion

    Full text link
    We compute the complete next-to-leading order SUSY-QCD corrections for the associated production of a charged Higgs boson with a top quark via bottom-gluon fusion. We investigate the applicability of the bottom parton description in detail. The higher order corrections can be split into real and virtual corrections for a general two Higgs doublet model and into additional massive supersymmetric loop contributions. We find that the perturbative behavior is well under control. The supersymmetric contributions consist of the universal bottom Yukawa coupling corrections and non-factorizable diagrams. Over most of the relevant supersymmetric parameter space the Yukawa coupling corrections are sizeable, while the remaining supersymmetric loop contributions are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore