143 research outputs found

    On the modification of the Efimov spectrum in a finite cubic box

    Full text link
    Three particles with large scattering length display a universal spectrum of three-body bound states called "Efimov trimers''. We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. Previous calculations for positive scattering length that were perturbative in the finite volume energy shift are extended to arbitrarily large shifts and negative scattering lengths. The renormalization of the effective field theory in the finite volume is explicitly verified. Moreover, we investigate the effects of partial wave mixing and study the behavior of shallow trimers near the dimer energy. Finally, we provide numerical evidence for universal scaling of the finite volume corrections.Comment: 21 pages, 8 figures, published versio

    Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory

    Full text link
    Properties of the proton and neutron are studied in partially-quenched chiral perturbation theory at finite lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe

    Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance

    Get PDF
    The processes involving low energy KˉN\bar{K}N and YπY\pi interactions (where Y=ΣY= \Sigma or Λ\Lambda) are studied in the framework of heavy baryon chiral perturbation theory with the Λ\Lambda(1405) resonance appearing as an independent field. The leading and next-to-leading terms in the chiral expansion are taken into account. We show that an approach which explicitly includes the Λ\Lambda(1405) resonance as an elementary quantum field gives reasonable descriptions of both the threshold branching ratios and the energy dependence of total cross sections.Comment: 16 pages, 6 figure

    The S-Wave Pion-Nucleon Scattering Lengths from Pionic Atoms using Effective Field Theory

    Get PDF
    The pion-deuteron scattering length is computed to next-to-next-to-leading order in baryon chiral perturbation theory. A modified power-counting is then formulated which properly accounts for infrared enhancements engendered by the large size of the deuteron, as compared to the pion Compton wavelength. We use the precise experimental value of the real part of the pion-deuteron scattering length determined from the decay of pionic deuterium, together with constraints on pion-nucleon scattering lengths from the decay of pionic hydrogen, to extract the isovector and isoscalar S-wave pion-nucleon scattering lengths, a^- and a^+, respectively. We find a^-=(0.0918 \pm 0.0013) M_\pi^{-1} and a^+=(-0.0034 \pm 0.0007) M_\pi^{-1}.Comment: 19 pages LaTeX, 7 eps fig

    Three particles in a finite volume: The breakdown of spherical symmetry

    Full text link
    Lattice simulations of light nuclei necessarily take place in finite volumes, thus affecting their infrared properties. These effects can be addressed in a model-independent manner using Effective Field Theories. We study the model case of three identical bosons (mass m) with resonant two-body interactions in a cubic box with periodic boundary conditions, which can also be generalized to the three-nucleon system in a straightforward manner. Our results allow for the removal of finite volume effects from lattice results as well as the determination of infinite volume scattering parameters from the volume dependence of the spectrum. We study the volume dependence of several states below the break-up threshold, spanning one order of magnitude in the binding energy in the infinite volume, for box side lengths L between the two-body scattering length a and L = 0.25a. For example, a state with a three-body energy of -3/(ma^2) in the infinite volume has been shifted to -10/(ma^2) at L = a. Special emphasis is put on the consequences of the breakdown of spherical symmetry and several ways to perturbatively treat the ensuing partial wave admixtures. We find their contributions to be on the sub-percent level compared to the strong volume dependence of the S-wave component. For shallow bound states, we find a transition to boson-diboson scattering behavior when decreasing the size of the finite volume.Comment: 21 pages, 4 figures, 2 table

    Nuclear Physics from Lattice QCD

    Full text link
    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.Comment: 56 pages, 39 pdf figures. Final published versio

    Baryon Decuplet to Octet Electromagnetic Transitions in Quenched and Partially Quenched Chiral Perturbation Theory

    Full text link
    We calculate baryon decuplet to octet electromagnetic transition form factors in quenched and partially quenched chiral perturbation theory. We work in the isospin limit of SU(3) flavor, up to next-to-leading order in the chiral expansion, and to leading order in the heavy baryon expansion. Our results are necessary for proper extrapolation of lattice calculations of these transitions. We also derive expressions for the case of SU(2) flavor away from the isospin limit.Comment: 16 pages, 3 figures, revtex

    More on the infrared renormalization group limit cycle in QCD

    Get PDF
    We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. It was conjectured that small increases in the up and down quark masses can move QCD to the critical trajectory for an infrared limit cycle in the three-nucleon system. At the critical quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We exemplify three parameter sets where this effect occurs at next-to-leading order in the chiral counting. For one of them, we study the structure of the three-nucleon system in detail using both chiral and contact effective field theories. Furthermore, we investigate the matching of the chiral and contact theories in the critical region and calculate the influence of the limit cycle on three-nucleon scattering observables.Comment: 17 pages, 7 figures, discussion improved, results unchanged, version to appear in EPJ

    On neutral pion electroproduction off deuterium

    Get PDF
    Threshold neutral pion electroproduction on the deuteron is studied in the framework of baryon chiral perturbation theory at next-to-leading order in the chiral expansion. To this order in small momenta, the amplitude is finite and a sum of two- and three-body interactions with no undetermined parameters. We calculate the S-wave multipoles for threshold production and the deuteron S-wave cross section as a function of the photon virtuality. We also discuss the sensitivity to the elementary neutron amplitudes.Comment: 6 pp, revtex, 3 figs, corrected version, to appear in Phys. Rev.

    Hadronic Electromagnetic Properties at Finite Lattice Spacing

    Full text link
    Electromagnetic properties of the octet mesons as well as the octet and decuplet baryons are augmented in quenched and partially quenched chiral perturbation theory to include O(a) corrections due to lattice discretization. We present the results for the SU(3) flavor group in the isospin limit as well as the results for SU(2) flavor with non-degenerate quarks. These corrections will be useful for extrapolation of lattice calculations using Wilson valence and sea quarks, as well as calculations using Wilson sea quarks and Ginsparg-Wilson valence quarks.Comment: 19 pages, 0 figures, RevTeX
    corecore