598 research outputs found

    Solar Neutrinos with Three Flavor Mixings

    Get PDF
    The recent 71Ga solar neutrino observation is combined with the 37Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.Comment: August 1992 (Revised) PURD-TH-92-

    Non-adiabatic level crossing in (non-) resonant neutrino oscillations

    Get PDF
    We study neutrino oscillations and the level-crossing probability P_{LZ}=\exp(-\gamma_n\F_n\pi/2) in power-law like potential profiles A(r)∝rnA(r)\propto r^n. After showing that the resonance point coincides only for a linear profile with the point of maximal violation of adiabaticity, we point out that the ``adiabaticity'' parameter γn\gamma_n can be calculated at an arbitrary point if the correction function \F_n is rescaled appropriately. We present a new representation for the level-crossing probability, P_{LZ}=\exp(-\kappa_n\G_n), which allows a simple numerical evaluation of PLZP_{LZ} in both the resonant and non-resonant cases and where \G_n contains the full dependence of PLZP_{LZ} on the mixing angle ξ\theta. As an application we consider the case n=−3n=-3 important for oscillations of supernova neutrinos.Comment: 4 pages, revtex, 3 eps figure

    Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos

    Get PDF
    Under the assumption that the density variation of the electrons can be approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein effect is treated for three generations of neutrinos. The generalized hypergeometric functions that result from the exact solution of this problem are studied in detail, and a method for their numerical evaluation is presented. This analysis plays a central role in the determination of neutrino masses, not only the differences of their squares, under the assumption of universal quark-lepton mixing.Comment: 22 pages, LaTeX, including 2 figure

    Classical Nambu-Goldstone fields

    Get PDF
    It is shown that a Nambu-Goldstone (NG) field may be coherently produced by a large number of particles in spite of the fact that the NG bosons do not couple to flavor conserving scalar densities like ψˉψ\bar{\psi}\psi. If a flavor oscillation process takes place the phases of the pseudo-scalar or flavor violating densities of different particles do not necessarily cancel each other. The NG boson gets a macroscopic source whenever the total (spontaneously broken) quantum number carried by the source particles suffers a net increase or decrease in time. If the lepton numbers are spontaneously broken such classical NG (majoron) fields may significantly change the neutrino oscillation processes in stars pushing the observational capabilities of neutrino-majoron couplings down to mÎœ/300m_{\nu}/300 GeV.Comment: 11 pages, updated, to appear in PR

    Is bi-maximal mixing compatible with the large angle MSW solution of the solar neutrino problem?

    Get PDF
    It is shown that the large angle MSW solution of the solar neutrino problem with a bi-maximal neutrino mixing matrix implies an energy-independent suppression of the solar nu_e flux. The present solar neutrino data exclude this solution of the solar neutrino problem at 99.6% CL.Comment: 6 pages. No figure

    The Oscillation Probability of GeV Solar Neutrinos of All Active Species

    Get PDF
    In this paper, I address the oscillation probability of O(GeV) neutrinos of all active flavours produced inside the Sun and detected at the Earth. Flavours other than electron-type neutrinos may be produced, for example, by the annihilation of WIMPs which may be trapped inside the Sun. In the GeV energy regime, matter effects are important both for the ``1-3'' system and the ``1-2'' system, and for different neutrino mass hierarchies. A numerical scan of the multidimensional three-flavour parameter space is performed, ``inspired'' by the current experimental situation. One important result is that, in the three-flavour oscillation case, P{alpha,beta} is different from P{beta,alpha} for a significant portion of the parameter space, even if there is no CP-violating phase in the MNS matrix. Furthermore, P{mu,mu} has a significantly different behaviour from P{tau,tau}, which may affect expectations for the number of events detected at large neutrino telescopes.Comment: 38 pages, 10 figure

    Supernova neutrino oscillations: A simple analytical approach

    Get PDF
    Analyses of observable supernova neutrino oscillation effects require the calculation of the electron (anti)neutrino survival probability P_ee along a given supernova matter density profile. We propose a simple analytical prescription for P_ee, based on a double-exponential form for the crossing probability and on the concept of maximum violation of adiabaticity. In the case of two-flavor transitions, the prescription is shown to reproduce accurately, in the whole neutrino oscillation parameter space, the results of exact numerical calculations for generic (realistic or power-law) profiles. The analytical approach is then generalized to cover three-flavor transitions with (direct or inverse) mass spectrum hierarchy, and to incorporate Earth matter effects. Compact analytical expressions, explicitly showing the symmetry properties of P_ee, are provided for practical calculations.Comment: 22 pages (RevTeX) + 5 figures (PostScript

    SN1987A and the Status of Oscillation Solutions to the Solar Neutrino Problem (including an appendix discussing the NC and day/night data from SNO)

    Get PDF
    We study neutrino oscillations and the level-crossing probability PLZ in power-law potential profiles A(r)\propto r^n. We give local and global adiabaticity conditions valid for all mixing angles theta and discuss different representations for PLZ. For the 1/r^3 profile typical of supernova envelopes we compare our analytical to numerical results and to earlier approximations used in the literature. We then perform a combined likelihood analysis of the observed SN1987A neutrino signal and of the latest solar neutrino data, including the recent SNO CC measurement. We find that, unless all relevant supernova parameters (released binding energy, \bar\nu_e and \bar\nu_{\mu,\tau} temperatures) are near their lowest values found in simulations, the status of large mixing type solutions deteriorates considerably compared to fits using only solar data. This is sufficient to rule out the vacuum-type solutions for most reasonable choices of astrophysics parameters. The LOW solution may still be acceptable, but becomes worse than the SMA-MSW solution which may, in some cases, be the best combined solution. On the other hand the LMA-MSW solution can easily survive as the best overall solution, although its size is generally reduced when compared to fits to the solar data only.Comment: 31 pages, 32 eps figures; 5 pages, 5 eps figures addendum in v2, discussing the recent SNO NC data and changes in SN paramete

    Insights on Distinct Left Atrial Remodeling Between Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction

    Get PDF
    Background: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) commonly coexist with overlapping pathophysiology like left atrial (LA) remodeling, which might differ given different underlying mechanisms. Objectives: We sought to investigate the different patterns of LA wall remodeling in AF vs. HFpEF. Methods: We compared LA wall characteristics including wall volume (LAWV), wall thickness (LAWT), and wall thickness heterogeneity (LAWT[SD]) and LA structure, function among the controls (without AF or HFpEF, n = 115), HFpEF alone (n = 59), AF alone (n = 37), and HFpEF+AF (n = 38) groups using multi-detector computed tomography and echocardiography. Results: LA wall remodeling was most predominant and peak atrial longitudinal strain (PALS) was worst in HFpEF+AF patients as compared to the rest. Despite lower E/e' (9.8 ± 3.8 vs. 13.4 ± 6.4) yet comparable LA volume, LAWT and PALS in AF alone vs. HFpEF alone, LAWV [12.6 (11.6–15.3) vs. 12.0 (10.2–13.7); p = 0.01] and LAWT(SD) [0.68 (0.61–0.71) vs. 0.60 (0.56–0.65); p &lt; 0.001] were significantly greater in AF alone vs. HFpEF alone even after multi-variate adjustment and propensity matching. After excluding the HFpEF+AF group, both LAWV and LAWT [SD] provided incremental values when added to PALS or LAVi (all p for net reclassification improvement &lt;0.05) in discriminating AF alone, with LAWT[SD] yielding the largest C-statistic (0.78, 95% CI: 0.70–0.86) among all LA wall indices. Conclusions: Despite a similar extent of LA enlargement and dysfunction in HFpEF vs. AF alone, larger LAWV and LAWT [SD] can distinguish AF from HFpEF alone, suggesting the distinct underlying pathophysiological mechanism of LA remodeling in AF vs. HFpEF.</p
    • 

    corecore