318 research outputs found

    Classical Nambu-Goldstone fields

    Get PDF
    It is shown that a Nambu-Goldstone (NG) field may be coherently produced by a large number of particles in spite of the fact that the NG bosons do not couple to flavor conserving scalar densities like ψˉψ\bar{\psi}\psi. If a flavor oscillation process takes place the phases of the pseudo-scalar or flavor violating densities of different particles do not necessarily cancel each other. The NG boson gets a macroscopic source whenever the total (spontaneously broken) quantum number carried by the source particles suffers a net increase or decrease in time. If the lepton numbers are spontaneously broken such classical NG (majoron) fields may significantly change the neutrino oscillation processes in stars pushing the observational capabilities of neutrino-majoron couplings down to mν/300m_{\nu}/300 GeV.Comment: 11 pages, updated, to appear in PR

    Experimental status of quaternionic quantum mechanics

    Get PDF
    Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. We review the only direct search for quaternionic quantum mechanics yet carried out and outline a recent proposal by the present authors to look for quaternionic effects in correlated multi-particle systems. We set out how such experiments might distinguish between the several quaternionic models proposed in the literature.Comment: 8 pages, no figures, revtex. An update of paper appearing in journal reference given below, with minor amendments and latest additional reference

    Measurements of spin rotation parameter A in pion-proton elastic scattering at 1.62 GeV/c

    Get PDF
    The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.Comment: 7 pages, 3 figures. To be published in Phys. Lett.

    Nonequilibrium Evolution of Correlation Functions: A Canonical Approach

    Get PDF
    We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space translation only by using a canonical approach based on the recently developed Liouville-von Neumann formalism. The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for the quantum mechanical analog of the ϕ4\phi^{4} model. The technique involves representing the Hamiltonian in a Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any desired order. The correlation functions for the field theory are then investigated in the Hartree approximation and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up to O(λ2){\cal O}(\lambda^2). These correlation functions take into account next-to-leading and next-to-next-to-leading order effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations for the equal-time, connected correlation functions beyond the leading order. These equations are derived by including the connected 4-point functions in the hierarchy. The resulting coupled set of equations form a part of infinite hierarchy of coupled equations relating the various connected n-point functions. The connection with other approaches based on the path integral formalism is established and the physical implications of the set of equations are discussed with particular emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with non-equilibrium evolution beyond Hartree approx. based on the LvN formalism, has been adde

    Confronting hybrid inflation in supergravity with CMB data

    Full text link
    FF-term GUT inflation coupled to N=1 Supergravity is confronted with CMB data. Corrections to the string mass-per-unit-length away from the Bogomolny limit are taken into account. We find that a superpotential coupling 10^{-7}/\mcN \lesssim \kappa \lesssim 10^{-2}/\mcN, with \mcN the dimension of the Higgs-representation, is still compatible with the data. The parameter space is enlarged in warm inflation, as well as in the curvaton and inhomogeneous reheat scenario. FF-strings formed at the end of PP-term inflation are also considered. Because these strings satisfy the Bogomolny bound the bounds are stronger: the gauge coupling is constrained to the range 107<g<10410^{-7} < g <10^{-4}.Comment: 36 pages, 15 figure

    A 15.7-minAM CVn binary discovered in K2

    Get PDF
    We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components

    Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources

    Full text link
    We cross-correlate the Cosmic Microwave Background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modelling the theoretical expectation for this signal, we extract the signatures of dark energy (Integrated Sachs-Wolfe effect;ISW), hot gas (thermal Sunyaev-Zeldovich effect;thermal SZ), and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7 \sigma level, which is consistent with the theoretical prediction based on observations of X-ray clusters. We also see the ISW signal at the 2.5 \sigma level, which is consistent with the expected value for the concordance LCDM cosmology, and is an independent signature of the presence of dark energy in the universe. Finally, we see the signature of microwave point sources at the 2.7 \sigma level.Comment: 35 pages (preprint format), 8 figures. In addition to minor revisions based on referee's comments, after correcting for a bug in the code, the SZ detection is consistent with the X-ray observations. Accepeted for publication in Physical Review

    Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces

    Get PDF
    Faddeev equations for elastic Nd scattering have been solved using modern NN forces combined with the Tucson-Melbourne two-pion exchange three-nucleon force, with a modification thereof closer to chiral symmetry and the Urbana IX three-nucleon force. Theoretical predictions for the differential cross section and several spin observables using NN forces only and NN forces combined with three-nucleon force models are compared to each other and to the existing data. A wide range of energies from 3 to 200 MeV is covered. Especially at the higher energies striking three-nucleon force effects are found, some of which are supported by the still rare set of data, some are in conflict with data and thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and reference

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227
    corecore