6 research outputs found

    Influence of Heat Input, Working Fluid and Evacuation Level on the Performance of Pulsating Heat Pipe

    Get PDF
    An experimental study on pulsating heat pipe (PHP) is presented in this work. A closed loop PHP with a single U turn is fabricated and tested. The transient and steady state experiments are conducted and operating temperatures are measured. The experiments are carried out for different working fluids, heat input and for different evacuation levels. The derived parameters include thermal resistance and heat transfer coefficient of PHP. The results of these experiments show an intermittent motion of the working fluid at lower heat input. The temperature difference between evaporator and condenser at steady state is found lower for acetone compared to water, ethanol and methanol. Lower value of thermal resistance and higher value of heat transfer coefficient are observed in case of acetone compared to water, ethanol and methanol. Lower values of temperature difference between evaporator and condenser and thermal resistance and higher value of heat transfer coefficient are observed at atmospheric conditions of operation of PHP compared to evacuation conditions. The Power Spectral Density Analysis is also carried out on the results of these experiments using FFT technique to analyse the pulsating motion of the fluid in a PHP. In the Power Spectral Density analysis, the frequency distribution of temperature variation in PHP was observed over a wider range, signifying the periodic motion in the fluid flow of the liquid slug and vapour plug. This characteristic frequency corresponded to the characteristic time for a couple of adjacent vapour plug and liquid slug passing through a specific local wall surface in a PHP

    Buoyancy Driven Heat Transfer in Cavities Subjected to Thermal Boundary Conditions at Bottom Wall

    Get PDF
    Natural convection in cavities is studied numerically using a finite volume based computational procedure. The enclosure used for flow and heat transfer analysis has been bounded by adiabatic top wall, constant temperature cold vertical walls and a horizontal bottom wall. The bottom wall is subjected to uniform/sinusoidal/linearly varying temperatures. Nusselt numbers are computed for Rayleigh numbers (Ra) ranging from 103 to 107 and aspect ratios (H/L) 0.5 and 1. Air is taken as working fluid (Pr = 0.7). Results are presented in the form of stream lines, isotherm plots and average Nusselt numbers. It is observed from this study that the uniform temperature at the bottom wall gives higher Nusselt number compared to the sinusoidal and linearly varying temperature cases. The average Nusselt number increases monotonically with Rayleigh number for both aspect ratio 1 and 0.5 for bottom wall and side walls. For the case of aspect ratio 1, the average Nusselt number for a given Rayleigh number increases at the bottom wall compared to aspect ratio 0.5. However, the average Nusselt number increases as the aspect ratio decreases from 1 to 0.5 for side wall except for uniform temperature case

    Cleaning cycle optimisation in non-tracking ground mounted solar PV systems using Particle Swarm Optimisation

    No full text
    The effect of installation azimuth angle in the optimization of the cleaning cycle of a solar photovoltaic plant was experimentally investigated in this study. The optimum cleaning cycle was determined using Particle Swarm Optimization algorithm cognizance of the fact that different orientations have different soiling rates. Soiling rates on three different azimuth configurations were experimentally investigated and an exponential soiling loss model was developed for each configuration for use in the optimization problem. Azimuth angle differences of ±12.5% were found to have a significant influence on soiling of as much as 28.29% for the selected location. The North of North West configuration was found to be optimal as opposed to the generally accepted North configuration for maximum energy generation at a minimum cost of energy. This configuration generated 0.87% more energy at unit energy cost of 0.093comparedtotheNorthconfigurationwhichhadaminimumcostof0.093 compared to the North configuration which had a minimum cost of 0.113. The optimized cleaning cycles were 35 days for the optimal configuration while the North configuration had an optimized cleaning cycle of 28 days. A 17.7% difference in the cost of energy was recorded due the influence of soiling. The study revealed that for minimizing the unit energy cost, it is necessary to take into effect the influence of soiling
    corecore