144 research outputs found

    Drought induced xylem embolism in four riparian trees from the Western Cape Province: Insights and implications for planning and evaluation of restoration

    Get PDF
    AbstractIn Mediterranean climates, rainfall is restricted to periods of low evaporative demand, leaving plants to survive the summer drought. The purpose of this study was to determine the contribution of drought tolerance to the distribution of riparian species. These physiological insights will assist in developing target species lists for restoration of riparian ecosystems in the Western Cape, currently heavily degraded due to land clearing and invasive aliens. We estimated P50 and P100 from vulnerability curves and Ψx in four species across a range of summer water availability estimated by streamflow. As expected, decreasing streamflow resulted in lower predawn and mid-day xylem water potential, and species identified in previous studies as having broad distributions, such as Brabejum stellatifolium and Metrosideros angustifolia, sustained greater decreases in mid-day xylem water potential and were less vulnerable to cavitation than Rapanea melanophloeos or Brachyleana neriifolia, species with more restricted distributions. These results provide preliminary evidence that a consideration of drought tolerance might be useful in refining lists of target species for active restoration and evaluation of restoration success across projects in streams and rivers with different fluvial regimes

    Free breathing lung T1 mapping using image registration in patients with idiopathic pulmonary fibrosis

    Get PDF
    Purpose To assess the use of image registration for correcting respiratory motion in free breathing lung T1 mapping acquisition in patients with idiopathic pulmonary fibrosis (IPF). Theory and Methods The method presented used image registration to synthetic images during postprocessing to remove respiratory motion. Synthetic images were generated from a model of the inversion recovery signal of the acquired images that incorporated a periodic lung motion model. Ten healthy volunteers and 19 patients with IPF underwent 2D Look‐Locker T1 mapping acquisition at 1.5T during inspiratory breath‐hold and free breathing. Eight healthy volunteers and seven patients with IPF underwent T1 mapping acquisition during expiratory breath‐hold. Fourteen patients had follow‐up scanning at 6 months. Dice similarity coefficient (DSC) was used to evaluate registration efficacy. Results Image registration increased image DSC (P < .001) in the free breathing inversion recovery images. Lung T1 measured during a free breathing acquisition was lower in patients with IPF when compared with healthy controls (inspiration: P = .238; expiration: P = .261; free breathing: P = .021). Measured lung T1 was higher in expiration breath‐hold than inspiration breath‐hold in healthy volunteers (P < .001) but not in patients with IPF (P = .645). There were no other significant differences between lung T1 values within subject groups. Conclusions The registration technique significantly reduced motion in the Look‐Locker images acquired during free breathing and may improve the robustness of lung T1 mapping in patients who struggle to hold their breath. Lung T1 measured during a free breathing acquisition was significantly lower in patients with IPF when compared with healthy controls

    Experimental and quantitative imaging techniques in interstitial lung disease.

    Get PDF
    Interstitial lung diseases (ILDs) are a heterogeneous group of conditions, with a wide and complex variety of imaging features. Difficulty in monitoring, treating and exploring novel therapies for these conditions is in part due to the lack of robust, readily available biomarkers. Radiological studies are vital in the assessment and follow-up of ILD, but currently CT analysis in clinical practice is qualitative and therefore somewhat subjective. In this article, we report on the role of novel and quantitative imaging techniques across a range of imaging modalities in ILD and consider how they may be applied in the assessment and understanding of ILD. We critically appraised evidence found from searches of Ovid online, PubMed and the TRIP database for novel and quantitative imaging studies in ILD. Recent studies have explored the capability of texture-based lung parenchymal analysis in accurately quantifying several ILD features. Newer techniques are helping to overcome the challenges inherent to such approaches, in particular distinguishing peripheral reticulation of lung parenchyma from pleura and accurately identifying the complex density patterns that accompany honeycombing. Robust and validated texture-based analysis may remove the subjectivity that is inherent to qualitative reporting and allow greater objective measurements of change over time. In addition to lung parenchymal feature quantification, pulmonary vessel volume analysis on CT has demonstrated prognostic value in two retrospective analyses and may be a sign of vascular changes in ILD which, to date, have been difficult to quantify in the absence of overt pulmonary hypertension. Novel applications of existing imaging techniques, such as hyperpolarised gas MRI and positron emission tomography (PET), show promise in combining structural and functional information. Although structural imaging of lung tissue is inherently challenging in terms of conventional proton MRI techniques, inroads are being made with ultrashort echo time, and dynamic contrast-enhanced MRI may be used for lung perfusion assessment. In addition, inhaled hyperpolarised 129Xenon gas MRI may provide multifunctional imaging metrics, including assessment of ventilation, intra-acinar gas diffusion and alveolar-capillary diffusion. PET has demonstrated high standard uptake values (SUVs) of 18F-fluorodeoxyglucose in fibrosed lung tissue, challenging the assumption that these are 'burned out' and metabolically inactive regions. Regions that appear structurally normal also appear to have higher SUV, warranting further exploration with future longitudinal studies to assess if this precedes future regions of macroscopic structural change. Given the subtleties involved in diagnosing, assessing and predicting future deterioration in many forms of ILD, multimodal quantitative lung structure-function imaging may provide the means of identifying novel, sensitive and clinically applicable imaging markers of disease. Such imaging metrics may provide mechanistic and phenotypic information that can help direct appropriate personalised therapy, can be used to predict outcomes and could potentially be more sensitive and specific than global pulmonary function testing. Quantitative assessment may objectively assess subtle change in character or extent of disease that can assist in efficacy of antifibrotic therapy or detecting early changes of potentially pneumotoxic drugs involved in early intervention studies

    Highly-ordered onion micelles made from amphiphilic highly-branched copolymers

    Get PDF
    Uniform onion micelles formed from up to ten nano-structured polymer layers were produced by the aqueous self-assembly of highly-branched copolymers. Highly-branched poly(alkyl methacrylate)s were chain extended with poly(acrylic acid) in a two-step reversible addition–fragmentation chain transfer-self-condensing vinyl polymerization (RAFT-SCVP) in solution. The resulting polymers were dispersed into water from oxolane (THF) using a self-organized precipitation-like method and the self-assembled particles were studied by phase-analysis light scattering, small-angle neutron scattering, and electron microscopy techniques. The relative hydrophobicity of the blocks was varied by changing the alkyl methacrylate (methyl, butyl, or lauryl) and this was found to affect the morphology of the particles. Only the poly(butyl methacrylate)-containing macromolecule formed an onion micelle structure. The formation of this morphology was observed to depend on: the evaporation of the good solvent (THF) during the self-assembly process causing kinetic trapping of structures; the pH of the aqueous phase; and also on the ratio of hydrophobic to hydrophilic segments within the copolymer. The lamellar structure could be removed by annealing the dispersion above the glass transition temperature of the poly(butyl methacrylate). To exemplify how these onion micelles can be used to encapsulate and release an active compound, a dye, rhodamine B (Rh B), was encapsulated and released. The release behaviour was dependent on the morphology of the particles. Particles formed containing the poly(methyl methacrylate) or poly(lauryl methacrylate) core did not form onions and although these materials absorbed Rh B, it was continuously released at room temperature. On the other hand, the lamellar structure formed from branch-poly(butyl methacrylate)-[poly(butyl methacrylate)-block-poly(acrylic acid)] allowed for encapsulation of approximately 45% of the dye, without release, until heating disrupted the lamellar structure

    Hyperpolarised 129-xenon diffusion-weighted MRI for assessing lung microstructure in IPF

    Get PDF
    Background Hyperpolarised 129-xenon (129Xe) magnetic resonance imaging (MRI) shows promise in monitoring the progression of idiopathic pulmonary fibrosis (IPF) due to the lack of ionising radiation and the ability to quantify functional impairment. Diffusion-weighted (DW)-MRI with hyperpolarised gases can provide information about lung microstructure. The aims were to compare 129Xe DW-MRI measurements with pulmonary function tests (PFTs), and to assess whether they can detect early signs of disease progression in patients with newly diagnosed IPF. Methods This is a prospective, single-centre, observational imaging study of patients presenting with IPF to Northern General Hospital (Sheffield, UK). Hyperpolarised 129Xe DW-MRI was performed at 1.5 T on a whole-body General Electric HDx scanner and PFTs were performed on the same day as the MRI scan. Results There was an increase in global 129Xe apparent diffusion coefficient (ADC) between the baseline and 12-month visits (mean 0.043 cm2·s−1, 95% CI 0.040–0.047 cm2·s−1 versus mean 0.045 cm2·s−1, 95% CI 0.040–0.049 cm2·s−1; p=0.044; n=20), with no significant change in PFTs over the same time period. There was also an increase in 129Xe ADC in the lower zone (p=0.027), and an increase in 129Xe mean acinar dimension in the lower zone (p=0.033) between the baseline and 12-month visits. 129Xe DW-MRI measurements correlated strongly with diffusing capacity of the lung for carbon monoxide (% predicted), transfer coefficient of the lung for carbon monoxide (KCO) and KCO (% predicted). Conclusions 129Xe DW-MRI measurements appear to be sensitive to early changes of microstructural disease that are consistent with progression in IPF at 12 months. As new drug treatments are developed, the ability to quantify subtle changes using 129Xe DW-MRI could be particularly valuable

    The use of sewage treatment works as foraging sites by insectivorous bats

    Get PDF
    Sewage treatment works with percolating filter beds are known to provide profitable foraging areas for insectivorous birds due to their association with high macroinvertebrate densities. Fly larvae developing on filter beds at sewage treatment works may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of “activated sludge”. Insects and bat activity were surveyed at 30 sites in Scotland employing these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. was significantly higher at filter beds than at activated sludge sites. In addition, whilst foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent “good” foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats

    Lung MRI with hyperpolarised gases : current & future clinical perspectives

    Get PDF
    The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique – hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe – a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases

    A connectome of the adult drosophila central brain

    Get PDF
    The neural circuits responsible for behavior remain largely unknown. Previous efforts have reconstructed the complete circuits of small animals, with hundreds of neurons, and selected circuits for larger animals. Here we (the FlyEM project at Janelia and collaborators at Google) summarize new methods and present the complete circuitry of a large fraction of the brain of a much more complex animal, the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses, and proofread such large data sets; new methods that define cell types based on connectivity in addition to morphology; and new methods to simplify access to a large and evolving data set. From the resulting data we derive a better definition of computational compartments and their connections; an exhaustive atlas of cell examples and types, many of them novel; detailed circuits for most of the central brain; and exploration of the statistics and structure of different brain compartments, and the brain as a whole. We make the data public, with a web site and resources specifically designed to make it easy to explore, for all levels of expertise from the expert to the merely curious. The public availability of these data, and the simplified means to access it, dramatically reduces the effort needed to answer typical circuit questions, such as the identity of upstream and downstream neural partners, the circuitry of brain regions, and to link the neurons defined by our analysis with genetic reagents that can be used to study their functions. Note: In the next few weeks, we will release a series of papers with more involved discussions. One paper will detail the hemibrain reconstruction with more extensive analysis and interpretation made possible by this dense connectome. Another paper will explore the central complex, a brain region involved in navigation, motor control, and sleep. A final paper will present insights from the mushroom body, a center of multimodal associative learning in the fly brain

    A connectome and analysis of the adult Drosophila central brain

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain
    corecore